学年

質問の種類

数学 高校生

教えていただきたいです( . .)"

- 分散 である。 おくと, 92 難易度★ 90 60 目標解答時間 SELECT SELECT 15分 以下の問題を解答するにあたっては,必要に応じて巻末の正規分布表を用いてもよい。 (1)ある学校で生徒会長選挙が行われた。 100人の生徒が投票し、そのうち36 人がAさんに投票した。 投票した100人のうち1人を選ぶとき,その人がAさんに投票していたら 1,投票していなければ 0の値をとる確率変数を Xとする。 ア Xの期待値は 標準偏差は エオ カキ である。 (2)2人の議員を選ぶ選挙が行われ,100万人の有権者が投票した。 この選挙ではより多い得票率 があれば確実に当選する。 開票率 1%, すなわち 10000人分が開票されたとき, Bさんに3600票 が入っていた。この開票された票を無作為に選ばれた標本とするとき, 標本比率は である。 これをBさんの得票率の母比率の推定値とする。 また, 母標準偏差もここから推定される であるとする。 エオ カキ ケ ここで、 10000 は大きいから,標本比率は近似的に正規分布 Np に従う。 コサシ に対する信頼度 99%の信頼区間は 得点の2 ク ケ ス セン × = 0.99 イウ コサシ ことがわ より, 小数第4位を四捨五入すると 0. タチツ Sp0 テトナ 点 10) 法集 107 である。 これより,p> 1/23 と推定できるので,Bさんは「当選確実」と判断できる。 (3)2人の議員を選ぶ選挙が行われ, 10万人の有権者が投票した。この選挙では 1/3 より多い得票率が あれば確実に当選する。 N人分が開票されて, 36% がCさんに投票していた。 Cさんの得票率の母 比率がに対する信頼度99%の信頼区間が(2) と同じ信頼区間で 「当選確実」 と判断することができ るとき, N= である。 二 | については,最も適当なものを,次の①~③のうちから一つ選べ。 ⑩ 100 500 1000 141 10000 (配点 10) (公式・解法集 109 統計的な

回答募集中 回答数: 0
数学 高校生

至急お願いします🙏🙏🙏 解き方教えてください🙏

16 目標解答時間 8分 35 難易度 関連する基本問 ある温泉施設では,入館料を支払うことで温泉が利用でき、入館料に加えて岩盤浴利用料を 支払うことで温泉と岩盤浴の両方が利用できることになっている。ただし、岩盤浴のみを利用 することはできない。 大人料金と子ども料金は,それぞれ次のようになっている。 大人 子ども 入館料 800 円 600円 岩盤浴利用料 400円 300円 以下では,大人料金対象者を「大人」, 子ども料金対象者を「子ども」とし、入館料を支払っ た利用者を「温泉利用者」 さらに岩盤浴利用料を支払った利用者を 「岩盤浴利用者」とする。 この温泉施設の利用者の傾向について調べたところ、 次のことがわかった。 「温泉利用者」 の90%が 「大人」 である。 「温泉利用者」 の80%が 「 岩盤浴利用者」である。 「岩盤浴利用者」 の5%が 「子ども」 である。 「温泉利用者」がこれらの傾向に従うと仮定するとき, 「温泉利用者100人あたりの内訳」を 表に整理し, 問いに答えよ。 <温泉利用者100人あたりの内訳〉 (単位:人) 岩盤浴利用者 岩盤浴利用者でない 計 大人 (A) (B) (G) 子ども (C) (D) (H) 計 (E) (F) 100 ア %である。 (1)「温泉利用者」のうち, 「子ども」 の 「岩盤浴利用者」は (2)「温泉利用者」 のうち, 「大人」 の 「岩盤浴利用者」は イウ %である。 (3) 「子ども」の「温泉利用者」のエオ%が,「岩盤浴利用者」 である。 (4)「温泉利用者」一人あたりが支払う入館料と岩盤浴利用料の合計金額の期待値は カキクケ 円である。 (配点 10) (公式・解法集 43 44

回答募集中 回答数: 0
数学 高校生

至急教えて頂きたいです🙇‍♀️🙇‍♀️ 解き方教えてください🙏

16 目標解答時間 8分 35 難易度 関連する基本問 ある温泉施設では,入館料を支払うことで温泉が利用でき、入館料に加えて岩盤浴利用料を 支払うことで温泉と岩盤浴の両方が利用できることになっている。ただし、岩盤浴のみを利用 することはできない。 大人料金と子ども料金は,それぞれ次のようになっている。 大人 子ども 入館料 800 円 600円 岩盤浴利用料 400円 300円 以下では,大人料金対象者を「大人」, 子ども料金対象者を「子ども」とし、入館料を支払っ た利用者を「温泉利用者」 さらに岩盤浴利用料を支払った利用者を 「岩盤浴利用者」とする。 この温泉施設の利用者の傾向について調べたところ、 次のことがわかった。 「温泉利用者」 の90%が 「大人」 である。 「温泉利用者」 の80%が 「 岩盤浴利用者」である。 「岩盤浴利用者」 の5%が 「子ども」 である。 「温泉利用者」がこれらの傾向に従うと仮定するとき, 「温泉利用者100人あたりの内訳」を 表に整理し, 問いに答えよ。 <温泉利用者100人あたりの内訳〉 (単位:人) 岩盤浴利用者 岩盤浴利用者でない 計 大人 (A) (B) (G) 子ども (C) (D) (H) 計 (E) (F) 100 ア %である。 (1)「温泉利用者」のうち, 「子ども」 の 「岩盤浴利用者」は (2)「温泉利用者」 のうち, 「大人」 の 「岩盤浴利用者」は イウ %である。 (3) 「子ども」の「温泉利用者」のエオ%が,「岩盤浴利用者」 である。 (4)「温泉利用者」一人あたりが支払う入館料と岩盤浴利用料の合計金額の期待値は カキクケ 円である。 (配点 10) (公式・解法集 43 44

回答募集中 回答数: 0
数学 高校生

至急教えて頂きたいです🙇‍♀️‼️ 解き方教えてください🙏

16 目標解答時間 8分 35 難易度 関連する基本問 ある温泉施設では,入館料を支払うことで温泉が利用でき、入館料に加えて岩盤浴利用料を 支払うことで温泉と岩盤浴の両方が利用できることになっている。ただし、岩盤浴のみを利用 することはできない。 大人料金と子ども料金は,それぞれ次のようになっている。 大人 子ども 入館料 800 円 600円 岩盤浴利用料 400円 300円 以下では,大人料金対象者を「大人」, 子ども料金対象者を「子ども」とし、入館料を支払っ た利用者を「温泉利用者」 さらに岩盤浴利用料を支払った利用者を 「岩盤浴利用者」とする。 この温泉施設の利用者の傾向について調べたところ、 次のことがわかった。 「温泉利用者」 の90%が 「大人」 である。 「温泉利用者」 の80%が 「 岩盤浴利用者」である。 「岩盤浴利用者」 の5%が 「子ども」 である。 「温泉利用者」がこれらの傾向に従うと仮定するとき, 「温泉利用者100人あたりの内訳」を 表に整理し, 問いに答えよ。 <温泉利用者100人あたりの内訳〉 (単位:人) 岩盤浴利用者 岩盤浴利用者でない 計 大人 (A) (B) (G) 子ども (C) (D) (H) 計 (E) (F) 100 ア %である。 (1)「温泉利用者」のうち, 「子ども」 の 「岩盤浴利用者」は (2)「温泉利用者」 のうち, 「大人」 の 「岩盤浴利用者」は イウ %である。 (3) 「子ども」の「温泉利用者」のエオ%が,「岩盤浴利用者」 である。 (4)「温泉利用者」一人あたりが支払う入館料と岩盤浴利用料の合計金額の期待値は カキクケ 円である。 (配点 10) (公式・解法集 43 44

回答募集中 回答数: 0
数学 高校生

至急お願いします🙏 この問題の解き方教えてください🙏

16 35 難易度 ★★ 目標解答時間 8分 関連する基本問 ある温泉施設では,入館料を支払うことで温泉が利用でき、入館料に加えて岩盤浴利用料を 支払うことで温泉と岩盤浴の両方が利用できることになっている。ただし,岩盤浴のみを利用 することはできない。 大人料金と子ども料金は, それぞれ次のようになっている。 入館料 岩盤浴利用料 大人 800円 400円 子ども 600円 300円 以下では,大人料金対象者を「大人」, 子ども料金対象者を「子ども」とし、入館料を支払っ た利用者を「温泉利用者」, さらに岩盤浴利用料を支払った利用者を 「岩盤浴利用者」とする。 この温泉施設の利用者の傾向について調べたところ、次のことがわかった。 . 「温泉利用者」の90%が 「大人」である。 「温泉利用者」 の 80% が 「岩盤浴利用者」 である。 ・「岩盤浴利用者」 の5%が 「子ども」である。 「温泉利用者」がこれらの傾向に従うと仮定するとき, 「温泉利用者100人あたりの内訳」を 表に整理し、 問いに答えよ。 <温泉利用者100人あたりの内訳〉 (単位:人) 岩盤浴利用者 岩盤浴利用者でない 計 大人 (A) (B) (G) 子ども (C) (D) (H) 計 (E) (F) 100 ア %である。 (1)「温泉利用者」 のうち, 「子ども」 の 「岩盤浴利用者」は (2) 「温泉利用者」のうち, 「大人」 の 「岩盤浴利用者」は イウ %である。 (3) 「子ども」の「温泉利用者」のエオ%が、 「岩盤浴利用者」 である。 (4)「温泉利用者」一人あたりが支払う入館料と岩盤浴利用料の合計金額の期待値は カキクケ 円である。 (配点 10 ) (公式・解法集 43 44

回答募集中 回答数: 0
数学 高校生

この問題が分かりません。明日に授業で発表しなくてはなりません。どなたか教えてください。お願いします。

36 難易度 ★★ 目標解答時間 15分 0 を原点とするxy 平面上において,最初、 点 (1,0) にある点Pと点(0, 2) にある点Qが,次の 規則にしたがって移動する。 E [規則] さいころを1回投げて は (a) 1または2の目が出たとき,点Pはx軸方向に +1進み, 点 Qは動かない。 Q₁ (b) 1と2以外の目が出たとき,点Qはy軸方向に +1進み, 点 Pは動かない。 2 S 0 この試行を何回か繰り返したときの点P,Qについて,二つの線 分OP, OQを隣り合う2辺とする長方形の面積をSとする。 (1) さいころを3回投げたとき, S9 になる確率は ア である。 (2) さいころを1回投げたとき, 1または2の目が出るという事象をAとする。 さいころを5回投げ たとき,5回ともAが起こる場合は S ウエ であり, 4回だけ A が起こる場合は S オカ 確 率 である。 (3) さいころを5回投げたときについて考える。 S= ウエ になる確率は キ ク であり, S=オカ ケコ になる確率は 。 である。 また, S≧ ウエ であるとき、点Pのx座標が4以下である条件 サシ 付き確率は [スセソ タチツ である。 (4) さいころを3回投げたときのSの値に対して得点を与える次の二つのゲームがある。 ゲームI: S= 9 であれば9点, その他のときは0点 ゲームII: S = 5 であればα点, その他のときは0点 ただし, αは自然数とする。 二つのゲームを比較し,正の得点を得る確率は テ 。 テ | の解答群 ⑩ ゲームIの方が大きい ① ゲームII の方が大きい ②どちらも同じである 得点の期待値が大きい方のゲームを選ぶことにする。 ゲームII が選ばれるようなαの値の範囲は a≥ である。 (配点 15 ) (公式・解法集 40 42 43 44

回答募集中 回答数: 0
1/7