学年

質問の種類

数学 中学生

(1)の答えって2枚目の写真のように表したらだめなんですか?

P.18~19 式による説明 3 余る よう 下の図のように,大きさのちがう半円と, 同じ長さの直線を組み合わせて,陸上競技用 P.20~21 等式の 完成 のトラックを作った。 カレンダーに並んだ数を いろいろな規則性がひそ 半円部分」 直線部分 幅1m 半円部分 岩手 ■ 数, 1, 5。 でわ 形で表されること am bm 第1レーンの 走者が走る距離 第4レーンの 走者が走る距離 第1レーン J 第4レーン もっと 直線部分の長さはam, 最も小さい半円の直 径は6m, 各レーンの幅は1mである。 また 最も内側を第1レーン, 最も外側を第4レー ンとする。 ラインの幅は考えず、円周率を とすると次の問いに答えなさい。 きょり (1) 第1レーンの内側のライン1周の距離をlm とすると,l=2a+b と表される。 この式を αについて解きなさい。 これかえ 右の図は、ある月のカ さんは、右の図のよう 1+8+9=18=3 × 6 のように、3つの数の 進さんは、他の部分 3の倍数になるか、 進さんの囲み ょう。(ただい (19) n 右下の この3 n+( n+5 和歌山 したか 3 の 囲み方を変 横一列 使って l=2a+b 10 両辺を入れかえる P.18~19 式による説明 2a+wb=l 箱の中 bを移項する 2a=l-rb (例 6枚入 l-rb 両辺を2でわる = とき, l-rb 数 2 a= 2 2 数こ 女数を 栃木 (2) 図のトラックについて,すべてのレーンの

解決済み 回答数: 1
数学 高校生

場合の数の質問です 赤線で引いた所が分かりません どうして×3なんですか

346 基本 (全体) (・・・でない)の考えの利用 00000 大 中 小3個のさいころを投げるとき, 目の積が4の倍数になる場合は何通り あるか。 [東京女子大] 目の積が4の倍数」を考える正攻法でいくと, 意外と面倒。そこで, として考えると早い。ここで、目の積が4の倍数にならないのは、次の場合である。 目の積が4の倍数)=(全体)-(目の積が4の倍数でない) [1] 目の積が奇数 3つの目がすべて奇数 2つは奇数 [2] 目の積が偶数で 4の倍数でない→偶数の目は2または1つだけで、他の CHART 場合の数 目の出る場合の数の総数は 早道も考える (Aである) = (全体) (Aでない)の活用 6×6×6=216 (通り) 解答 目の積が4の倍数にならない場合には,次の場合がある。 [1] 目の積が奇数の場合 3つの目がすべて奇数のときで 3×3×3=27 (通り) [2] 目の積が偶数で, 4の倍数でない場合 積の法則 (6" と書いてい よい。) 数どうしの種は 1つでも偶数があれば 積は偶数になる。 3つのうち、2つの目が奇数で、残りの1つは2または64が入るとダメ。 の目であるから (32×2)×3=54 (通り) [1] [2] から 目の積が4の倍数にならない場合の数は 27+54=81 (通り) よって、目の積が4の倍数になる場合の数は 216-81=135 (通り) 目の積が偶数で4の倍数でない場合の考え方 和の法則 (全体)・・・でない) 基本 500円 で、 いも 指針 解答 上の解答の [2] は,次のようにして考えている。 検討 大中小のさいころの出た目を (大,中,小) と表すと, 3つの目の積が偶数で、4の倍数 にならない目の出方は,以下のような場合である。 (大,中,小) = (奇数, 奇数, 2 または 6 ) 3×3×2 通り よって =(奇数 2 または 6 奇数) 3×2×3 通り =(2または6, 奇数,奇数) 2×3×3 通り (32×2)×3通り 参考目の積が4の倍数になる場合の数を直接求めると,次のようになる。 (i) 3つの目がすべて偶数 33通り 2つの目が偶数で, 残り1つの目が奇数 (32×3)×3通り 合わせて 27+81 +27 (1つの目が4で、 残り2つの目が奇数 → → (1×32) ×3通り」 =135(通り) 練習 大,中,小3個のさいころを投げるとき,次の場合は何通りあるか。 ③9 (1) 目の積が3の倍数になる場合 (2)目の積が6の倍数になる場合 p.357 EX81 検

未解決 回答数: 1
1/1000