学年

質問の種類

数学 高校生

(4)と(5)がわからないです💦 よろしくお願いいたします!

するとも いミスをい にしておき 1/2 基本 例題 52 2次関数の係数の符号とグラフ 2次関数y=ax2+bx+c のグラフが右の図で与えら れているとき,次の値の符号を調べよ。 (1) a b2-4ac (2) (3)c (5)a-b+c at-c CHART & THINKING x 91 基本事項 4. 基本 51 97 場合の 中の グラフから情報を読み取る 式の値は直接求めることができない。 「上に凸か,下に凸か」, 「軸や頂点の位置」. 軸との交点の位置」 などに着目して, 式の値の符号を調べよう。 上に凸か, y 頂点のy座標は? 下に凸か? 3章 x=-1 における 10 座標は? 1 x 7 軸との交点の 位置は ? 軸の 位置は ? 解答 関数とグラフ ax2+bx+c=ax+ x+c=a(x = a(x + 2 a)² 6 \2 62-4ac ←ax2+bx+c 2a 4a b よって, 放物線y=ax2+bx+c の軸は 直線 x=- 2a' = a(x²+10x)+c b2-4ac 頂点の座標は 4a る。 また, x=-1 のとき (1) グラフは上に凸の放物線であるから =ax+ y=a(-1)2+6(-1)+c=a-b+c=d(x+ a<0 2a 6\2 2a -a b 2a b2-4ac y軸との交点のy座標はcであ=d{(x+/2/2)-(12)+ +c =a(x- +c b (2) 軸が x<0 の部分にあるから <0 ← ->0 b 2 2a b 2a 4a 2a (1)より, a<0 であるから (3) グラフがy軸の負の部分と交わるから (4) 頂点のy座標が正であるから b<0 c<0 b2-4ac >0 4a 放物線y=ax2+bx+c について, (1)より, α<0 であるから -(b2-4ac)<0 すなわち b2-4ac > 0 軸と異なる2点で交 わる⇔b-4ac >0 が成り立つ (p.139 以降 (5)a-b+c は, x=-1におけるyの値である。 グラフから,x=-1 のとき すなわち a-b+c>0 y>0 を参照)。 1

解決済み 回答数: 1
数学 高校生

質問です。 この例題17の(2)の最大値を求める問題についてなのですが,解説の最初に「定義域の中央の値は1」と書かれています。 なぜ定義域の中央の値を用いるのでしょうか。 回答お願いします。

2) に答えよ。 (1) 最小値を求めよ。 関数として 「指針」 けるyの値 問題17 αは定数とする。 関数 y=2x4ax (0≦x≦2) について,次の問い (2) 最大値を求めよ。 αの値によって、定義域内で最小値、最大値をとるxの値が変わる。 グラフが下に凸のとき 最小値は,軸から最も近いxの値でとる 最大値は,軸から最も遠いxの値でとる 着させる。 注意。 これより、軸x=αの位置について以下のように場合分けをする。 [2] 定義域内 (1) [1] 定義域の左外 [3] 定義域の右外 (2)[1] 定義域の中央より左 [2] 定義域の中央 [3] 定義域の中央より右 答 関数の式を変形すると Ex≦5) cの値 y=2(x-a)-2a³ (0≤x≤2) x=0 のとき y = 0, x=2のとき y=8-8a, (1) [1] α < 0 のとき x=0で最小値0 [2]0≦a≦2 のとき x=αで最小値-2a2 [3] 2<α のとき x=2で最小値8-8α (2) 定義域の中央の値は1 (1)[1] [1] α <1 のとき x=2で最大値 8-8α [2] α=1 のとき x=0, 2 で最大値 0 [3] 1 <α のとき x=0 で最大値 0 [2] [3] x=α のとき y=-2a VVV (2) [1] 0 2 a 02 [2] 02 a [3] www 012 012 2012 012 201

回答募集中 回答数: 0
数学 高校生

とあるYouTuberの方のやり方で解いたのですが、この回答だと模試または定期テストで減点されますか?もしされるのであればどこがダメなのか教えてくださいm(_ _)m

646 基本 例題 38 ベクトルの終点の存在範囲(1) 動くとき,点Pの存在範囲を求めよ。 AOAB に対し, OP =sOA+tOB とする。 実数s, tが次の条件を満たしながら 00000 (2) 3s+t≤1, s≥0, t≥0 (1)s+2t=3 そこで,「係数の和が1」 の形を導く。 + ▲ = 1 なら直線 MN 指針 OP=OM + ▲ON で表された点Pの存在範囲は ●+A=1, 0, P.640 基本 基本 例題 39 ベクトルの終点の存在範囲(2) △OAB に対し, OP = sOA+ FOB とする。 実数s, tが次の年 動くとき、点Pの存在範囲を求めよ。 (1) 1≦s+t≦2, s≧0, t≧0 (1) 基本例題 38 (2)同様, st=k OP= 00 (1)条件から1/28+1/31=10P=1/28(30)+1/2/20 (1) A(1.0)、B(0.1)とする。 → (2) 3s+t=k ...... ①とおき,まず (0≦k≦1) を固定して 3s t ①から ·=1 3s k また、OP=4200+1/2OR (226 k k k と、点Pは線分 QR上にあることがわかる。 次に,kを動か B を見る。 80 0 する A 3 s+2t=35 解答 MAC (1)s+21-3から1/3s+1/31-1 -t=1 3 satu+B-A0-10 また +A3 OP-s(30A)+(OB) (20-80) A OB (2) 1s≤2, Ost≤1 を固定し 020, S+2t=3をてについて解くと、 1/2st/2となり、図で 表すと、左のようになる。 よって、点々の存左範囲は、 30A- OA OB=OB' = の動きを見る。 そこでまず 20, B とすると、直線ABである。 A kOA ゆえに、点Pの存在範囲は, + 30A B' B 30A=0A, OB=OB' & OPD)-40 と, 直線A'B' である。 A' (2) 3s+t=kとおくと A 0≤k≤1 k=0のとき,s=t= 0 であるから, 点Pは点0に一致する。 3s t t 0<k=1のとき +1/2=1.2 20.1/20 kk, 3S k t OP=3(OA)+(KOB) 3s また (2) Q = 3 k AOA ROBOB' とすると,kが一定のとき点P = は線分A'B' 上を動く。 ここでAOC とすると, = (2)A(1.0)、B(0.1)とする。 3s+tsをもの範囲で表すと、 t-3s+1 B さらに5:00だから、Pの存在 範囲を図で表すと、左の図のようになる。 B 認可とすると OB 点Pの存左範囲は、 B' 0≦k≦1の範囲でkが変わるとき 点Pの存在範囲は △0CB の周 および内部である。 A' AQ A △OCBの同および内部 A B と

未解決 回答数: 1
数学 高校生

(2)って何故このようになるのでしょうか

130 第2章 2次関数 Check 例題 69 最小値の最大・最小 *** 例題 7 (1) y= (2) y= 岐阜大・改) (ア (イ は実数の定数とする. 本の関数f(x)=x+3x+mmの定数における最小値を おく. 次の問いに答えよ. ただし, m (1) 最小値g をmを用いて表せ. (2)の値がすべての実数を変化するとき, gの最小値を求めよ. 考え方 (1) 例題 68と同様に考える. 軸が定義域に含まれるかどうかで場合分けする。 (2)(1)で求めたg をmの関数とみなし, グラフをかいて考える。 9432 32 解答 (1)f(x)=x2+3+m=xt- +m- グラフは下に凸で, 軸は直線 x=- (i) +222のとき 7 つまり,<- のとき グラフは右の図のようになる. したがって,最小値 g=m²+8m+10(x=m+2) 3 (ii) m≦! ≦m+2のとき 2 つまり、1ma12のとき 3 場合分けのポイント 例題 68 (1) と同様 NT mm+2 小太郎 322 2 グラフは右の図のようになる. したがって, 最小値 最小 m m+2 9 g=m- x=- 4 3 x= 2 「考え方 y お 解答 (1 (iii) m>-- のとき グラフは右の図のようになる。 したがって,最小値 g=m²+4m (x=m) (2)(1) より,gmの関数とす ると,グラフは右の図のよう になる. -4 72- 3 最小 mm+2 94 2 (iii) (vi) m軸,g軸となるこ 注意する よって,gの最小値は, (i) -6(m=-4 のとき) 10 m 15 大気 (ii) 4 23 小 最小 4 F 練習 *** を求めよ. 69g をmを用いて表せ. また, m の値がすべての実数を変化するとき,gの最大値 xの関数f(x)=2x2+3mx-2mの0≦x≦1 における最小値をgとするとき *

未解決 回答数: 1
1/1000