学年

質問の種類

数学 高校生

⑴の(iii)で(1/3)^4としたらダメなんですか?

第3問 (選択問題)(配点 20) 複数人がそれぞれプレゼントを一つずつ持ち寄り、 交換会を開く。 ただし, ブ レゼントはすべて異なるとする。 プレゼントの交換は次の手順で行う。 手順 外見が同じ袋を人数分用意し, 各袋にプレゼントを一つずつ入れたうえ で、各参加者に袋を一つずつでたらめに配る。 各参加者は配られた袋の中 のプレゼントを受け取る。 交換の結果、1人でも自分の持参したプレゼントを受け取った場合は,交換を やり直す。 そして、 全員が自分以外の人の持参したプレゼントを受け取ったとこ ろで交換会を終了する。 (1) 2人または3人で交換会を開く場合を考える。 (i) 2人で交換会を開く場合、 1回目の交換で交換会が終了するプレゼントの 受け取り方は ア 通りある。 したがって, 1回目の交換で交換会が終了 イ する確率は である。 ウ (i) 3人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの エ 通りある。 したがって, 1回目の交換で交換会が終了 オ する確率は である。 カ (面) 3人で交換会を開く場合, 4回以下の交換で交換会が終了する確率は キグ である。 ケコ (数学Ⅰ・数学A第3両は次ページに続く。)

未解決 回答数: 1
数学 高校生

確率の問題の質問です。(2)のP(0)に関してです。 P(0)は、「自分が持ってきたプレゼントを受け取る人数が0人」という事ですよね。A B C Dの各々が持ってきたプレゼントは誰にも配られないという事ですよね? そうなるとP(0)の答えは存在しなくないですか? 回答よろ... 続きを読む

基本 例題 45 和事象・余事象の確率 00000 (2) 自分が持ってきたプレゼントを受け取る人数がん人である確率を P(k) と これらのプレゼントを一度集めてから無作為に分配することにする。 あるパーティーに, A, B, C, Dの4人が1個ずつプレゼントを持って集まった。 (1)AまたはBが自分のプレゼントを受け取る確率を求めよ。 する。P(0), P (1) P(2), P(3), P (4) をそれぞれ求めよ。 基本 43 44 指針 (1) A, B が自分のプレゼントを受け取るという事象をそれぞれA,Bとして 和事象の確率 P(AUB)=P(A)+P(B)-P(A∩B) 解答 を利用する。 (2) P(0) が一番求めにくいので,まず,P(1)~P(4) を求める。そして,最後に P(0) をP(0)+P(1)+P(2)+P(3)+P(4)=1 (確率の総和は1)を利用して求める。 (1) プレゼントの受け取り方の総数は 4! 通り A,Bが自分のプレゼントを受け取るという事象をそれ ぞれA, B とすると, 求める確率は P(AUB)=P(A)+P(B)-P(A∩B) 3! 3! 2! 6 6 2 + + 4個のプレゼントを1列 に並べて, Aから順に受 け取ると考える。 〒441-4! 2424=2Aの場合の数は,並び 24 12 (2) P(4),P(3), P(2), P (1) P(0) の順に求める。(A) [1] k=4 のとき, 全員が自分のプレゼントを受け取る から1通り。 よって 1 = 1 P(4)=- 424 4! 24 [2] k=3となることは起こらないからP (3) =0 [3] k=2のとき,例えばAとBが自分のプレゼント) を受け取るとすると, C, D はそれぞれD, Cのプレ ゼントを受け取ることになるから通り □□□の3つの に, B, C, D のプレゼン トを並べる方法で3!通 3人が自分のプレゼン を受け取るなら、残り 人も必ず自分のプレゼ トを受け取る。 自分のプレゼントを受 よって P2)=4C2X1_11) 4! 4 [4] k=1のとき, 例えばA が自分のプレゼントを受け 取るとすると, B, C,D はそれぞれ順に C D B ま たは D,B,Cのプレゼントを受け取る2通りがある 検討 取る2人の選び方は 通り。 から P(1)= 4C1X2_1 AC (A) = 4! 3 L [1]~[4] から P(0)=1-{P(1)+P(2)+P(3)+P(4)} k=0のときは4人の 完全順列 (p.354) の数 =1-11/3 あるから 1 1 + + 4 24 8 3 = よって P(0)=1 P(0)==

未解決 回答数: 1
数学 高校生

複素数平面の問題なのですが、(3)で4P3などで求めているのは何故でしょうか?4C3では駄目な理由を教えて頂きたいです。

軸上に あるから =, 総合 α=sin- π +icos 100 とする。 (1) 複素数αを極形式で表せ。 ただし, 偏角0 の範囲は00<2とする。 (2) 数学C245 2個のさいころを同時に投げて出た目をk, lとするとき = 1 となる確率を求めよ。 複素数である確率を求めよ。 (3)3個のさいころを同時に投げて出た目を k l m とするとき, ah, a, a” が異なる3つの 2 π πで、 10 5 5 2 01/03x<2であるから ※極形式は T π 2 - 2 5 [山口] →本冊 数学C例題107 108 Cosshの←一般に、OBA F = sin(x)+icos (12/31) =conf/x+isin/3d 2 TC とき sinβ+icos β の = cos(-8)+isin(-8) (2) kl は整数であるから 2 kl 5 -(cosx+isinx)=cos 2+isin 24 =COS 2kl 5 2kl 5 よって,=1となるのは, nを整数として 2kl ←ド・モアブルの定理。 ここで, 2個のさいころの目の出方の総数は されるとき,つまりkl=5nから, klが5の倍数のときである。 5 π=2nと表 ←1=cos2n+isin2na ( n は整数) 62通り が5の倍数にならないのは、ん、1がともに5の倍数でないと余事象の確率を利用す きであり,その目の出方は 52 通り したがって、求める確率は 52 11 1- = 62 36 (3)3個のさいころの目の出方の総数は 2 -л+isin- acos 3 12 s 5 なんで6かけている?lis る。 k, lのとりうる値は, どちらも1,2,3,4,5, 6のうちいずれか。 この 6つの目のうち,5の倍 数は5のみ。 総合 2 π =COS 137) = cos 27+isin 127 ・π =COS 5 nisin 2 =a 5 また, arga= -πであり, argum= 25 ( は整数)から y 1 a=a a² 8 arga²=л, arga³=л, arga= -π, argo=2π -1 /x 0 a³ a 6 5 0<arga=arga<arga²<arga³<arga¹<arga³=2 ゆえに,α'(=α),2,3,α^,α はすべて異なる値である。 よって,ak, a', am が異なる3つの複素数となるのは,k, L, mがすべて異なり,かつ1と6を同時に含まない場合である。 それは次の [1][2] の場合に分けられる。 [1]1も6も含まれない場合 (*) (7. 1. 2) klmは2, 3, 4, 5 のいずれかの値をとるから、この場合1または6が, の数は 4P3=4・3・2=24(通り) [2]k,l,mに 1 6 のいずれか一方が含まれる場合 k l m のいずれか1つが1または6の値をとり 残りの2 つは2,3,4,5のいずれかの値をとるから,この場合の数は 3・2・4P2(*)=3・2・12=72(通り) かくりつ 復習 Chじゃない?? のどこにくるかで Ct 通 り 1または6のどちら かで2通り、残りの2か 所に 2, 3, 4, 5から2つ を選んで並べるからPz 通り。

未解決 回答数: 1
数学 高校生

赤丸の部分はどういう意味ですか

んけんと確率 本例題 39 2人でじゃんけんを1回するとき,勝負が決まる確率を求めよ。 e) 3人でじゃんけんを1回するとき,ただ1人の勝者が決まる確率を求めよ。 34人でじゃんけんを1回するとき,あいこになる確率を求めよ。 (3) あいこ になる じゃんけんの確率の問題では,「誰が」と「どの手」に注目する。 (2) 誰がただ1人の勝者か 3人から1人を選ぶから 3通り どの手で勝つか 「グー」, 「チョキ」 「パー」 の3通り 「全員の手が同じ」 か 「3種類の手がすべて出ている」場合があ る。 よって、 手の出し方の総数は,これらの場合の数の和になる。 | 2人の手の出し方の総数は 329(通り) 1回で勝負が決まる場合, 勝者の決まり方は 2通り そのおのおのに対して, 勝ち方がグー, チョキ,パーの3通 りある。 よって 求める確率は 3×3 1 27 3 2×3 2 9 3 勝負が決まらない場合は、 2人が同じ手を出したときの後で学ぶ余事象の確率 (p.335) による考え方。 3 2 3通りあるから, 求める確率は 1- 9 3 (2) 3人の手の出し方の総数は 3°=27(通り) 3通り 1回で勝負が決まる場合, 勝者の決まり方は そのおのおのに対して、勝ち方がグーチョキ,パーの3通 りある。 よって、求める確率は 本八 34=81(通り) (3) 4人の手の出し方の総数は あいこになる場合は,次の [1], [2] のどちらかである。 [1] 手の出し方が1種類のとき 3通り [②2] 手の出し方が3種類のとき グーグーチョキ, パー}, {グー, チョキチョキ, パー},| グーチョキパー, パー}の3つの場合がある。 よって、求める確率は 出す人を区別すると,どの場合も 4! 2! 基本38 4! 通りずつあるから, 21 ×3=36 (通り) (1) 3+36 13 81 27 1人の手の出し方が3通り, 2人でじゃんけんをするか 3×3通り 1人の手の出し方が3通り, 3人でじゃんけんをするか ら 3×3×3 通り 3×3×3×3 通り 4人全員が 「グー」または 「チョキ」または「パー」 例えば {グー, グーチョキ, パー} で「グー」 を出す2人を 4人の中から選ぶと考えて =14/01(通り) 4C2×2!= p.338 EX30 329 2章 6 事象と確率

未解決 回答数: 1
数学 高校生

数学A 条件付き確率の問題です。 問題の(1)の(ⅱ)の①と②の言ってることの違いがよくわかりません。 なぜこの問題は条件付き確率の和ではなく、「k=1,2,3かつ事象Aが起こる確率」の和が事象Aが起こる確率の求め方となるのですか?

例題 4 オリジナル問題 次のようなルールで行われる抽選会に1回参加する。 ・ルール ●表と裏が等しい確率で出るコインを N 枚投げる。 ●表が出たコインの枚数がん枚のとき,くじをん回引く。 この抽選会で使われるくじは、 何回引いても「当たりくじ」を引く確率がつね に一定値であるとする。 また, 抽選会に1回参加するとき 「当たりくじ」を 少なくとも1回引くという事象をAとする。このとき, 次の問いに答えよ。 (1) N=3, p=1/12 とする。 4 (i) k = 2 となる確率は ア イ である。 また,k=2という条件の下で ウ エオ 事象Aが起こるという条件付き確率は である。 よって,k=2であり、かつ事象A が起こる確率は カキ クケコ である。 (ii) 事象 A が起こる確率を求める方法として最も適当なものを、次の ⑩〜②のうちから一つ選べ。 ⑩k123 となる確率をそれぞれ求め, それらの和にかをかける。 ① 「k=1 という条件の下で事象Aが起こるという条件付き確率」, 「k=2 という条件の下で事象Aが起こるという条件付き確率」, 「k=3 という条件の下で事象A が起こるという条件付き確率」 を求め それらの和をとる。 ② 「k=1 であり、 かつ事象A が起こる確率」, 「k=2であり,かつ事 象Aが起こる確率」, 「h=3であり、かつ事象A が起こる確率」を求め, それらの和をとる。 (2) この抽選会で事象Aが起こる確率について述べたものとして最も適当な ものを、次の⑩~ ③ のうちから一つ選べ。 ⑩pが等しければ,Nが変化しても,事象Aが起こる確率は変化しない。 ①Nが等しければ,が変化しても、事象Aが起こる確率は変化しない。 ② かが等しければ,Nが変化しても,k=2 であるという条件の下で事 象Aが起こるという条件付き確率は変化しない。 ③Nが等しければ,が変化しても,k=2であるという条件の下で事 象Aが起こるという条件付き確率は変化しない。

回答募集中 回答数: 0
数学 高校生

なぜ最小値が2以下である場合は反復試行の確率の公式を使わなきゃいけないのに、最小値が3以上である場合は階乗で済ませられるんですか?

ん。 取り出すとき、 これらは互い る事象をA となる。 47 91 利用す うこと。 一の2 通りの または んで 例 42 のさいこ 2以下と3以上などが さいころの出る目の最小値 23を繰り返し3回げるとき、次の確率を求めよ。 目の最小値が2以下である確率 目の最小値が2である確率 となり, 計算が大変。 2以下の目が1回 2回 3回出る場合の確率を考え,それらの和を求めればよいのだが、 THINKING 「~以下」 には 余事象の確率 ~以上」 最小値が2以下となるのはどのような場合があるかを調べてみよう。 CHART 問題文は「3回のうち少なくとも1回は2以下の目が出ればよい」 といい換えることが 実際に計算すると, できるから、余事象の確率が利用できそうだと考えるとよい。 出る目がすべて2以上ならよいのだろうか? (2) 最小値が2となるのはどのようなときだろうか? 右の図のように、出る目がすべて2以上, すなわち最小値が 以上の場合には,最小値が2でない場合が含まれているこ とがわかる。 3回のうち少なくとも1回は2の目が出なければならない から、余事象の確率が利用できないだろうか? Ci×2×42+3C2×23×4+2 63 最小値が3以上」 であるから, A の起こる確率は 43 P(A) = 6³3 = (4) ³ = 27 8 - よって, 求める確率は 8 P(A)=1-P(A)=1- 19 27 27 CORNE 1個のさいころを繰り返し3回投げるとき, 目の出方は 63 TRON SHA (1) A: 「目の最小値が2以下」 とすると, 余事象Aは「目の 考えても同じこと。 (2) 目の最小値が2以上である確率は よって, (1) から, 求める確率は 1258 61 216 27 216 = (2) 125 63 216 最小値が 2以上 最小値が 3以上 最小値が2 inf 「3個のさいころを同 時に投げる」 ときの確率と 事象と確率の基本性質 3以上の目は、3,4,5, 6の4通り。 3回とも2以上 6以下の 目が出る確率。 PRACTICE 42 ③ 3 UNSHBANC To 1個のさいころを繰り返し3回投げるとき,次の確率を求めよ。 (1) 目の最大値が6である確率 ← (最小値が2以上の確率) - (最小値が3以上の確 率) (2) 目の最大値が4である確率

回答募集中 回答数: 0
1/10