学年

質問の種類

数学 高校生

5/54が答えだとダメな理由が分かりません🙇🏻‍♀️

重要 例題 64 ベイズの定理 00000 袋Aには赤球 10個, 白球 5個, 青球3個袋Bには赤球8個, 白球4個, 青球 16個袋Cには赤球4個 白球3個, 青球5個が入っている。 3つの袋から無作為に1つの袋を選び、その袋から球を1個取り出したところ白 球であった。それが袋から取り出された球である確率を求めよ。 基本63 指針 である。 袋Aを選ぶという事象をA, 白球を取り出すという事象をW とすると, 求める確率 P(WA) は条件付き確率 P(A)= P(W) よって,P(W), P(A∩W) がわかればよい。 まず, 事象 Wを次の3つの排反事象 [1] Aから白球を取り出す。 [2] Bから白球を取り出す。 [3] Cから白球を取り出す に分けて、P(W) を計算することから始める。 また P(AW)-P(A)P (W) 袋A, B, C を選ぶという事象をそれぞれA, B, C とし、複雑な事象 解答 白球を取り出すという事象をWとすると P(W)=P(A∩W)+P(B∩W)+P(COW) =P(A)P (W)+P(B)」(W)+P(C)P(W) p=2.5 /1 4 1 3 + + 3 18 3 18 3 12 5 54 排反な事象に分ける <加法定理 <乗法定理 A B C AnW BOW Cow WS 54 27 2 1 = -34+ 12/7+ 1/2-1/101 4 よって、求める確率は Pw(A)= P(A∩W)_P(A)P (W) 5 1 10 = ÷ P(W) P(W) 54 4 27 ( ベイズの定理 検討 上の例題から,Pw(A)= P(A)P (W) P(A)P^(W)+P(B)P₂(W)+P(C)Pc(W) が成り立つ。 一般に、n個の事象 A1, A2,..., A. が互いに排反であり、そのうちの1つが必ず起こる ものとする。 このとき, 任意の事象Bに対して、 次のことが成り立つ。 P(A)P(B) P(A)= P(A1)P, (B)+P(A2)Pi, (B)+....+P(A)P. (B) (k=1, 2,......,n) これをベイズの定理という。このことは、B=(AB)U(A∩B)U...... U (A0B) で、 AB, A2B,...... ABは互いに排反であることから,上の式の右辺の分母がP(B) と一致し、 Pr (A)= P(BA) P(A∩B) P(B) かつ P(A∩B)=P(A) PA, (B) から導か P(B) れる。

回答募集中 回答数: 0
数学 高校生

数A 確率 (ウ)の4C2/9C2のところなのですが、反復試行で計算するときと写真のようにCを使って計算するときの違いを教えていただきたいです🙇🏻

頻出 ★★☆☆ bがこの順に もとに戻さ が変わる (試行が ●くじ 238 乗法定理[2] 頻出 ★★☆☆ 袋には白球5個, 黒球4個, 袋Bには白球5個, 黒球3個が入ってい 個の球を同時に取り出すとき 2個とも白球である確率を求めよ。 る。 袋Aから2個の球を同時に取り出して袋Bに入れた後, 袋Bから2 場合に分ける 条件より, 袋Aからどの色の球を取り出すかによって,袋Bに 入っている白球の個数が変わる (試行が独立でない)。 [2個取り出し 袋Bに入れる 2個取り出す 5個 黒 4個 袋 A 袋B Action 独立でない試行は,段階に分けて各試行の確率を考えよ 例題 237 袋A 袋B (ア) 白球2個取り出し, 白球2個取り出す ■くじ 袋Bから白球) (イ) 2個取り出す 白球1個) 黒球1個 取り出し, 白球2個取り出す 「いたくじが当たり であるとき, 残るく 本で,その中には くじが2本含まれ から 3-1 10-1 2-9 (ウ)黒球2個取り出し, 白球2個取り出す 袋Aから取り出す 2個の球の色により, 次の場合に分けて 考える。 (ア) 袋Aから白球を2個取り出すとき 6 章 この確率は5CC 9C2 17 袋Bには白球7個と黒球3個が入っているから × 9C2 5C2 7C2 10 C2 7 54 5C1X4C1 (イ)袋Aから白球と黒球を1個ずつ取り出すとき 袋Bには白球6個と黒球4個が入っているから この確率は 9C2 いろいろな確率 10 C2 ■ は, a がはずれく 「いたとき, bが当 じを引く確率 (当 じは3本) である 3 1 10-1 3 ...,n) に りくじを引く 例題 18 参照) がこの順に1本 引いたくじはも 問題237 5C1X4C16C2 5 27 9C2 × (ウ)袋Aから黒球を2個取り出すとき 袋Bには白球5個と黒球5個が入っているから 4C2 5C2 × 9C2 1 10 C2 27 (ア)~(ウ)は互いに排反であるから、求める確率は 7 5 1 19 54 + + 27 27 54 (d) 188 4C2 この確率は 10人のうち 確率の加法定理 238袋 A には白球6個 黒球4個, 袋Bには白球5個, 黒球3個が入っている。 袋 時に取り出して袋Aに入れる。 このとき, 袋Aの中の白球と黒球の個数が最 Aから2個の球を同時に取り出して袋Bに入れた後, 袋Bから2個の球を同 初と変わらない確率を求めよ。 p.447 問題238 431

回答募集中 回答数: 0
数学 高校生

63. 記述に問題点等ありますか??

る確率 機械 63 良品 械 A を当 の意 製造 3 50 ベイズの定理 重要 例題 63 袋には赤球10個,白球5個,青球3個;袋Bには赤球8個,白球4個,青球 00000 ;袋Cには赤球4個,白球3個,青球5個が入っている 1 3つの袋から1つの袋を選び, その袋から球を1個取り出したところ白球であっ それが袋Aから取り出された球である確率を求めよ。 した。 袋Aを選ぶという事象をA, 白球を取り出すという事象をWとすると, 求める確率は P(WNA) 条件付き確率Pw (A)= よって、P(W),P(A∩W)がわかればよい。まず,事象 Wを3つの排反事象 [1] A から白球を取り出す,[2] B から白球を取り出す, [3] C から白球を取り出す に分けて, P(W) を計算することから始める。 また P(A∩W)=P(A)P(W) 袋 A, B, C を選ぶという事象をそれぞれ A, B, C とし, 白球 | ⑩ 複雑な事象 を取り出すという事象をWとすると 排反な事象に分ける P(W)=P(A∩W)+P(B∩W) + P(COW) 1 1 5 3 18 よって 求める確率は =P(A)PA(W)+P(B)PB(W)+P(C)Pc(W) 1 5 + 3-2 2-3 41 +2²7 + 1/²2 - 11 12 54 4 + 1 4 3 18 検討 ベイズの定理 上の例題から、Pw (A)= AMB, A₂B, 一致し,PB (Ak)= P(W) である。・・・・・・・・・ Pw(A) = P(ANW) _ P(A)PÂ(W) _ 5 P(W) P(W) 54 . P(B) ·|· P(B) 1 10 4 27 加法定理 乗法定理 基本 62 A B C AOW BOW Cow 2 27 W 5 542 P(A)PA (W) P(A)PA(W)+P(B)PB(W)+P(C)Pc(W) 一般に, n個の事象 A1, A2, ・・・・・・, An が互いに排反であり, そのうちの1つが必ず起こるもの とする。このとき 任意の事象B に対して,次のことが成り立つ。 PB(AR)= P(Ah) PAN (B) (k=1,2,.., n) P(A)PA,(B)+P(A2)P,(B)+......+P(A)Pa,(B) | これをベイズの定理という。このことは, B=(A∩B) U(A20B) U......U (A∩B) で, A∩Bは互いに排反であることから、上の式の右辺の分母が P(B) と一 P(B∩Ak)P(A∩B) かつP(A∩B)=P(Ak) Pa, (B)から導かれる。 001 が成り立つ。 14 12 A-0004 練習 =) 45 (1 63 仕入れた比率は4:3:2であり, 製品が不良品である比率はそれぞれ3%, 4%, ある電器店が A 社, B 社 C社から同じ製品を仕入れた。 A社、B社、C社から | 5%であるという。 いま、大量にある3社の製品をよく混ぜ,その中から任意に1 [類 広島修道大] (p.395 EX46 |個抜き取って調べたところ, 不良品であった。 これがB社から仕入れたものであ る確率を求め 393 2章 9 条件付き確率 る る る る。 立つ。 である である m-1) 倍数で である 1, 2) ったと 灼数は, あるな を満 には, ①へ。 14234 n進 という。

回答募集中 回答数: 0
1/7