学年

質問の種類

数学 高校生

分母のΖーα 達がβ+γに変わるのはどういった式変形になってるのか中身を教えてください🙇‍♀️

基本 124 三角形の重心を表す複素数 00000 等式ぇ=a+β+yが成り立つとき,日はABCの心であることを証明せよ 基本123 重要 125 12 単位円上の異なる3点A(a), B (B), C(y) と, この円上にない点H(z)について ABCの重心が甘⇔AHBCBHCA 指針 例えば、 AHBC を次のように、 複素数を利用して示す。 Y-B r-B AHL BC 虚数 814 818 B + (7-8)= =0 また, 3点A, B, Cは単位円上にあるから [ 純虚数wキ かつ w+w=0 (p.504 参照) を利用している。 ||=||=||=1⇔ad=BB=YY=1 これとz=a+β+yから得られる z-α = β+y を用いて, B, yだけの等式に直 て証明する。 8-1 CHART 垂直であることの証明 ABCD が純虚数 B-a 3点A(a),B(B), C(y) は単位円上にあるから 解答 すなわち よって |a|=||=|x|=1 |a|=||=||=1 aa=βB=ry=1 α= 0, β= 0, y = 0 であるから B(B) A(α) H(2) C Y A, B, C, H はすべて異なる点であるから, Y-B ¥0で 2-a y—ß _y—ß ¸y-B (*) (*) B= <指針 B' 大 垂直であるとい 条件を、純虚数 -B Y-B + + 2- B+r B+y B+y B+y Y-B + B+y 11 1|1|1|B y-BB-y いう複素数の条 更に等式 言い換えて示し + B+YY+B なお, bi が + Y ためには, b ことに注意。 =0 Y-B よって, では純虚数である。 z-a ゆえに AHLBC 同様にして BHICA 上の式で α したがって, Hは△ABCの垂心である。 y が αに入れ 練習 上の例題において, w=-aßy とおく。 wキαのとき,点D(w) は単位円 124 AD⊥BC であることを示せ。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

右に書いている解き方ではダメですか?

A 889 18A4 【解説】 平面図形からの出題である。 任意の △ABCの外側に三つの正三角形 △ABD, BCE, CAF をかき,それ ぞれの正三角形の重心をG,H,Iとするとき, △GHIは正三角形となる。 この三角形をナポレオンの三角形とい う。また,AH, BI, CGは1点で交わる。この点を第一ナポレオン点という。 第4問 場合の数と確率 【解法 】 odnos 賞 (1) 太郎さんの袋にはグー () が1枚, チョキ () が4枚,花子さ んの袋にはパー (1) が1枚, チョキ () が4枚入っているから, 1回目の勝負で太郎さんが勝つのは, (太郎, 花子)のカードの取り出 し方が () ()のときである。 よって、求める確率は1/13×1 4 4 1 8 + × 5 5 25 5 CE) 00005 1回目の勝負で花子さんが勝つのは, (太郎, 花子) のカードの取り出 し方が (,)のときである。 よって、求める確率は1/3x1/2= 25 (2)3回目の勝負で太郎さんが勝つのは、2回のあいこの後, (太郎,花 子)のカードの取り出し方が (,),( 図)のときである から、求める確率は (1)×(×) (4)×(×) × + 3 3 2-3 4 × = 3 25 3回目の勝負で花子さんが勝つのは、2回のあいこの後, (太郎, 花子) のカードの取り出し方が(,)のときであるから、求める確率は 4 5 13 1 1 3 3 25 DA as 00 AB がを (3)2回目の勝負で太郎さんが勝つ確率は 3 3 =(x+1/x1)x(x) 4 4 4 4回目の勝負で太郎さんが勝つ確率は 6 25 1 (++)× (׳)× (2×)× (±±±±±)- X 12 X 2 12 25 25 2回目の勝負で花子さんが勝つ確率は 4 1 25 4回目の勝負で花子さんが勝つ確率は 3 2 12 + (1x16)x(x1)x18x1)x/1/2×1/2)= 5回目の勝負で花子さんが勝つ確率は 1 25 -59 中 pa な No.1!! 校

解決済み 回答数: 1
1/23