学年

質問の種類

数学 高校生

(2)(ハ)の「y=2が漸近線だから、y=-1/xをx軸方向にp、y軸方向に2だけ平行移動したもの」でなんでこうなるのか分からないので教えて欲しいです!!

基礎 基礎問 第 62 第3章 いろいろな関数 ■3 いろいろな関数 37 分数関数 次の問いに答えよ. y= gにおいて, r>0 ならば、 右上と左下の部分で, r<0 な x-p らば,右下と左上の部分になります。 (2)(イ)y= (6-1)=(1+0)-(10 ax+b x+c に3点の座標を代入して 63 2x+1 (1) y=-1 のグラフをかけ. (2) 分数関数y= ax+6 x+c ぞれ定めよ. (x-(+1) が次の各条件をみたすときのa,b,cをそれ (3点 (0,3) (2,1) (1, 2) を通るw)+9 (ロ)漸近線がx=2とy=-1 で, 点 (1, -5) を通る yy=2が漸近線で,点(-2, 3)を通り,平行移動すると 1 y=- と一致する. I b=3c, 2a-b-c+2=0,a+b-2c-2=0 よって, a=1,6=3,c=1 (口) 漸近線がx=2, y=-1 だから, 題意をみたす分数関数は y=-1とおける. 漸近線がわかってい (1, -5) を代入して,r=4 るので,このおき方 がベスト 4 ..y=-1+- -x+6 x-2 x-2 よって, a=-1,b=6,c=-2 -1 (ハ) y=2が漸近線だから,y=- をx軸方向に, y 軸方向に2だ I け平行移動したものが題意をみたす曲線. ⅡB ベク 48 <おき方を考える 第3章 y-2= よって、+2とおける. x-p ま (1) 分数関数のグラフをかくときは,y= 精 ax+b cx+d これが点(-2, 3) を通ることにより の形から, わり算 1 3= |によって y=- ygの形に変形しなければなりません. x-p +2 よって, p+2=1 したがって, p=-1 p+2 2x+1 (2)関数の係数を決定するときは、式をおくときに、条件を使っておくと, 使 う文字の数が少なくなり計算量を減らすことができます. それはこの形にすれば漸近線の方程式 = p, y = g がわかり、 すぐに ラフがかけるからです。 y= =1+1+2 :.y= x+1 よって, a=2,6=1,c=1 ② ポイント r 曲線 y= +αの漸近線はx=p とy=g 解答 x-p (1) _2x+1_2(x-1)+3 右図のようになる。ふれ よって, 漸近線はx=1, y=2 で, グラフは y= x-1 x-1 =2+ x-1 y=- =x-btqの形に 演習問題 37 次の問いに答えよ. -v=2 (1)y=- のグラフをかけ. x-1 注 分数関数のグラフは、漸近線で分けられ O 4つの領域のうち, 隣り合っていない2つの領域に存在します。 (2)y= 1 x-1 とy=-|x|+k のグラフが2個以上の共有点をも つようなんの値の範囲を求めよ. 0=2+2yとの交点10,-1) y=2+1-1 ③37 (1)g=21 よって D P

未解決 回答数: 1
物理 高校生

有効数字で質問なんですけど2.0×150の答えってどうなりますか?掛け算の場合最も桁数の少ない数字に合わせるとあるので3桁の数字をどうしたら良いかわからなくて、お願いします!

① 測定値の計算と有効数字 日本の た。こうして得た数字の 3, 5, ゆ た意味のある数字なので、これらを 有効数字 けたすう たこの例で,「有効数字の桁数は3桁である」という。有 せいみつ 効数字の桁数の多いものほど、精密に測定したことになる。 いまこの質量357g をkg の単位で表すと 0.357kg となる。 このとき, 0.357kg くらい 0位どりの0 なので、 有効数字の桁数には数えない。 したがって, 357gも0.357kg もどちらも有効数字は3桁である。 p.280 な重 がある。 5 太陽と 測定値には必ず誤差が含まれる。 測定値どうしの計算では, 有効数字を適切に扱 10 うために,次のような点を考慮しなければならない。 ■かけ算、わり算 しゃごにゅう 桁数 (四捨五入した後) とする。 測定値どうしをかけたりわったりするときは,通常, 最も少ない有効数字の 10 約 1 電子の 約 しかし ときに の0を ■指数 15 例えば 15 :縦 26.8cm, 横 3.2cmの長方形の面積 26.8cm×3.2cm=85.76cm² 答え 86cm² 3桁 2桁 2桁 (1) であ ■足し算、引き算 五入によって測定値の末位が最も高い位のものに合わせる。 た 例:21.58cm の棒と8.6cm の棒を継ぎ足した長さ 21.58cm + 8.6cm = 30.18cm 小数第2位 小数第 ■整数や無理数の扱い 整数や無理数は測定値ではな 答え 30.2cm 小数第1位 測定値どうしを足したり引いたりするときには,通常, 計算した結果を四捨 1 20 負の 20 NJ 10 25

回答募集中 回答数: 0
1/14