学年

質問の種類

国語 中学生

これの答え教えてください

じょうきょう 3 次の状況に合う故事成語をあとから選び、記号で答えなさい。 問 人数が多くレベルの高いチームで補欠になるよりも、無名チームに入って第一線で試合に出るほ うを選んだ。 このコンクールで大賞を取れば、プロの仲間入りができるだろう。 〔 問三 最後に一さじの塩を入れ忘れ、もの足りない味の料理となってしまった。 〕 ] 〕 〕 こりつ 問四 彼はあまりにも身勝手な言動をくり返すので、クラスの中で孤立してしまった。 問 彼は働きながら苦労して大学に通って勉学に励み、やがて世界的に有名な学者となった。 [キ 問六兄は、前回の税理士の試験に失敗したが、落ちたその日から次の試験に向けて勉強を再開し、見 事今回合格した。 ] 問七楽しみにしていた友人たちとのキャンプを、 当日、腹痛のために断念したが、大雨で大変な目に あったとあとで聞き、行かなくてよかったと思った。 〔 いっすい けいこう ぎゅうご ア一炊の夢 鶏口となるも牛後となるなかれ がりょうてんせい ウ画竜点睛を欠く とうりゅうもん エ守株 さいおう オ 登竜門 そか カ塞翁が馬 けんど 四面楚歌 ばじとうふう ク捲土重来 ケ 馬耳東風 けいせつ コ蛍雪の功 (

未解決 回答数: 0
日本史 高校生

すみません!大至急です!! これの答えを教えてください🙇🏻‍♀️

21 りつりょう 794年に(1)から平安京に遷都した箱 室生寺盗 室生寺は真言宗の寺院で、地形に応じた自由な伽藍配置をもつ 寺の五重塔は、 屋外の五重塔としては最小のものである。 また ては、金堂釈迦如莱岦像や釈迦如来坐像などがある。 平安初期の政治 次の文を読んで、下の問いに答えなさい。 あん 21 武天皇は、律令制の再建に努めた。 I 1 勘解 飛 鳥 はんでん ぞうよう 使を設置し, 班田の期間を一紀 (12年) - a 難に改め、雑搖を年間60日から30日に減じ 667年 大津宮 645年 654年 難波宮 -2 3 た。 また, 一部の地域を除いて軍団を廃止 し,(2)を採用して、 郡司の子弟らに国 府の守備などを担当させた。 さらに天皇は, ぐんだん A 飛鳥浄御原宮 ぐんじ 14 694年 藤原京 740年 恭仁京 (1) えみしせいとう b (3)を派遣した。 蝦夷征討に力を入れ,征夷大将軍として ↓710年 744年 B 平城京 難波宮 -5 -6 784年 さが 嵯峨天皇も桓武天皇の改革を継承し, 律 (1 745年 744年 C 紫香楽宮 -7 令制の再建に努め, (4) に際して(5) 794年 18 くろうどのとう を任じた蔵人頭や,都の治安維持や裁判 のために設けた ( 6 )など, 令に規定の ない新しい官職を設けた。 さらに法制の整 備を図り, つぎつぎと出された格や式を, D平安京 ← 福原京 1180年 d II 丹 き 近江 A -B きゅく しき 221 10 (7) 格式として編纂した。 その後, 貞 摂津 . 延喜格式が編纂され,また, 公式に令 の解釈を統一した 『(8)』 も編纂された。 (1) 文中の( )に適する語句を書け。 (2) 右のⅠの宮都変遷図のA~Dの位置を Ⅱの地図中のあ〜けからそれぞれ選び, 記号を書け。 (3) 思考 桓武天皇が下線部aを設置した目 的は何か。 当時の地方政治の問題点にふ れて,簡単に書け。 (4) 下線部bについて, 次の問いに答えよ。 ちんじゅ ① 右のⅢの地図のアには802年に鎮守 府が置かれた。 アの城の名を書け。 ② 鎮守府はアに置かれる前は,イに置 かれていた。 イの城の名を書け。 (5) 下線部cを長官とする役所を何という か。 (6) 下線部dを何というか。 III 和泉 河内 秋田城 733 おがち 雄勝城 759 いわらね 伊賀 うえ ■え 大和 志波城 1803 伊勢 3 (4) D (5) (6) (7) ぬたり 渟足柵 (8) 647 0 舟柵 648 キ (7) 文中 (7) 貞観延喜格式の3つを総称して何というか。 ちょくえいでん 8)9世紀に財源確保のため、大宰府管内に置かれた直営田を何というか。 16 T @ は

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

問題11についてです。 割合の応用問題なのですが、個数の求め方が分かりません。解説にはAの青ボールを移動させても比率が変わらないことからBの赤は2×2で4になると書いてあります。なぜそうなるのでしょうか。 式のたて方から教えていただけると嬉しいです。

問題10 問題 11 割合の応用 1 100点満点のテストを3回受けた。 1回目の点数は3回のテストの合計 点の35%に相当し、3回目の点数の0.7倍であった。 最も点数が低 かったのは何回目のテストか。 2 AとBの2人に個数が31となるようにボールを分配した。 ボールは 赤、青2色あり、 赤と青の比率は4:1である。 続いて、 Aの青ボー ル2個をBの赤ボール半分と交換したところ、 Aのボールはすべて赤 となり、AとBの持っている個数の比は3:1のままであった。 この とき、ボールは全部でいくつあるか。 (DA JA -B (010 (b)0 あか あお 2 12 成分AとBを1:2で混ぜた薬Xと3:5で混ぜた薬Yを同量混ぜて薬Z を作った。 Zに含まれる成分Aの割合は何%か。 解答の%は小数点第 1位を四捨五入すること。 3 ある畑A・Bでは、それぞれりんごの品種PQRを生産している。 2つの畑でそれぞれの品種が占める割合は、 AではPが60%、 Qが 40%、BではPが50%、 Q35%、 Rが15%であった。 また総生産 量は畑Aが60%、 Bが40%である。 このとき、2つの畑のりんごPの生産量合計は総生産量の何%か。

回答募集中 回答数: 0
数学 高校生

【高2数学・式と証明】 (2)の問題が全くわからないです🥲 解説読んでも何が何だかという感じで困ってます

20-8015-138LNY さい。 「氏名欄に 5E1- YMJ5E1-Z1C2-01 2 問題 を実数の定数とする。 xの方程式 x+kx3+ (2k+3)x + kx + 1 = 0 について,次の問いに答えよ。 (1)x + 1/2 =t とおいて,①をもの方程式として表せ。 (2)の方程式 ① が実数解をもたないようなんの値の範囲を求めよ。 ① A4&AT 着眼点 4 次の相反方程式の実数解の個数をテーマにした問題で、 そのままでは処理が難しいところを, 置き換えによって2次方程式に帰着させ, 処理を可能にするのがポイントである。 (1)①は4次方程式であるから,+1/2 の形をつくり出すために,両辺を x2で割るとよい。 21tの2次方程式が得られたので、このtの2次方程式がどのような解をもてばよいかに注 目してみよう。 そのために, x+ =tの関係から、 「x が実数でない (虚数である)」 ための IC の条件を調べるわけだが,まずは「xが実数である」ようなtの条件を考えるとよい。 解答 (1) ①はx=0を解にもたないから, ①の両辺を x2 で割ると k x2 + kx + 2k + 3 + + 10 = 0 IC x² 両辺をx2で割る前に x2≠0 であることを示しておく。 (x+1/21) 2-2+k(1+1/2)+2k+3=0 よって, 求める方程式は t2 + kt + 2k +1= 0 ② 0 (2)関係式x+1=tにおいて,xが実数であるためには tが実数で あることが必要で x + 1 = t t⇔r-tx + 1 = 0 であるから ( ③の判別式)=t-4≧0 t≤-2, t≥2 ③ 0< よって, tの2次方程式②がt≧2の範囲に実数解をもたない条件 を考える。 (ア) ②が実数解をもたないとき ②の判別式 D は D=k2-4(2k+1)=k2-8k-4 -2 x が実数でない tの条件を求 めるために, まずはが実数 となるtの条件を考える。 なお, 「t が実数」 であるこ とは必要条件であるが十分条 件でないことに注意しよう (t が実数であってもが実数 とは限らない)。 < ①が実数解をもつ条件は ② が 2の範囲に実数解を もつことであるとわかったか ら逆に①が実数解をもたな い条件は,②が t≧2 の範 囲に実数解をもたないことで ある。 であるから,D<0を解いて 4-2√5 <k < 4 + 2√5 (イ) ②が実数解をもち,それらがすべて-2<t < 2 をみたすとき 7 口県

未解決 回答数: 1
1/12