学年

質問の種類

数学 高校生

(2)がよく分かりません💦 どうして2と5が出てくるんですか?

Think 例題 276 循環小数法(2) ) 4 整数の性質の活用 581 6桁の循環節をもつ循環小数 A=0abcdef を3倍すると, 6桁 * * * * 循環節をもつ循環小数 0.bcdefa になるような最小のAを求めよ. n 101 (2) 3 6 1より大きくより小さい分数が有限小数になるような正の 整数nをすべて求め 考え方 (1) 循環小数Aを10倍すると, a,bcdefa となる。 14=0.abcdef abcdef abcdef...... 10A a.bcdefa bcdefa bcdefa...... m n こうな数のときかを考える. (p.580 解説参照) (2) 分数が有限小数になるのは,既約分数に直したときの分母の素因数がどのよ (1)条件より また, 3A=0.bcdefa 10A a.bcdefabcdef.... (1)これより, 10A-3A を計算して これら10A=a.bcdefabcdef・・ T =) 3A=0.bcdefabcdef 7A=a したがっ したがって, Am① 循環節が消えるように Aを10倍する。 10A と3A の小数点以 下が同じになる. 合 ここで,0<A<1,0<3A<1 より <A</1/3Aの値の範囲 ① より 01/13 したがって, <a< ①より<</ aは整数 (0≦a≦)より,a=1,2s) よってこのうち、 最小の循環小数は α=1のときみ で、 A== 0.142857 7 63 (2)1/13より。 322 8<n<18 3n 4 3333333 33333333 分数を小数で表したとき, 有限小数になるのは,既 約分数に直したときの分母が2と5以外に素因数を もたない場合に限られる方から小さい方を引くと 8<<18 の範囲の正の整数nでこの条件に合う のは,分子が6,すなわち, 2×3であることから, 分 22×3-12, 3×5-15, 2-16 6 3 6 Focus 館 15 16 5 12 2 人 2 6 3 = 5' 16 15 8 第9章 ← 既約分数の分母の素因数が25のみ 既約分数が有限小数になる 276 このとき、もとの自然数のうち最小のものを求めよ。 m ある自然数の逆数を小数で表すと3桁の循環節をもつ循環小数0.abc となる.

回答募集中 回答数: 0
数学 高校生

この問題の別解の解き方なんですが n🟰17のとき2分の1n(n-1)は272になると思うんですけどこれがn-1軍め の最後の番目ということですよね?そしたら273番目がn軍目の1番最初になり そこから302番ー273番をしても15にならないと思うんですがどこの考え方が間違っ... 続きを読む

奇こ (2) 差 (3) 452 基本 例 29 群数列の基本 n個の数を含むように分けるとき (1) 第n群の最初の奇数を求めよ。 (3)301は第何群の何番目に並ぶ数か。 奇数の数列を1/3,5/7, 9, 11/13, 15, 17, 19|21, このように、第 00000 (2)第n群の総和を求めよ。 [類 昭和大 p.439 基本事項 もとの数列 群数列では、次のように目 指針 数列を ある規則によっていくつかの 組 (群) に分けて考えるとき,これを群 数列という。 区切り れる [規則 る 区切りをとると もとの数列の 目すること群の最初の数が 群数列 がみえてくる 数列でいくと 目が ① もと ↓ ② 第 数列の式に代 見則 の個数は次のようになる。 上の例題は 群第1第2 第3群・・・・・・・・ 1 | 3,57,9,11| 第 (n-1) 群 第n群 初項 (n-1) 18 n個 公差2の 個数 1個 2個 3個 等差数列 11n(n-1)個 11n(n-1)+1番目の奇数 (1) 第k群の個数に注目する。 第k群にk 個の数を含むから,第 (n-1) 群の末頃ま でに{1+2+3++(n-1)} 個の奇数が 第1群 (1) 1個 3 77 ある。 よって、第n群の最初の項は, 奇数の数列 1, 3, 5, の 第2群 第3群 第4群 13, 15, 17, 19 第5群 21, 59 2個 9, 11 3個 4個 {1+2+3+......+(n-1)+1)番目の項で ある。 {(1+2+3+4)+1} 番目 検討 右のように、初めのいくつかの群で実験をしてみるのも有効である。 (2)第n群を1つの数列として考えると、求める総和は, 初項が (1) で求めた奇数 差が 2 項数nの等差数列の和となる。 (3) 第n群の最初の項をan とし,まず an≦301<ant となるnを見つける。 nに具 体的な数を代入して目安をつけるとよい。 CHART 群数列 数列の規則性を見つけ、区切りを入れる ② 第群の初項・ 項数に注目 (1) n≧2 のとき,第1群から第 (n-1) 群までにある奇数 第 (n-1) 群を考えるか 解答 の個数は 1+2+3+(n-1)=1/12 (n-1)n ら,n≧2という条件が つく。 よって,第n群の最初の奇数は (n-1)n+1番目の+1」 を忘れるな!!

解決済み 回答数: 1
数学 高校生

1番最後の[1][2]から、というところですが、 なぜ(-1)ⁿではなく(-1)ⁿ+¹なんですか💦

例題 28 重要 に分けて和を求める 00000 一般項がαn=(-1)"+1n2 で与えられる数列{an} に対して,Sn=ak とする。 (1) a2k-1+a2k (k=1, 2, 3, ......) を ん を用いて表せ。 (2) Sn= (n= 1, 2, 3, ......) と表される。 k=1 次のように頭を2つずつ区切ってみると Sn=(12-2)+(32-4)+(52-62)+...... =b₁ =b₂ 指針 (2) 数列{an}の各項は符号が交互に変わるから,和は簡単に求められない。」 =b3 ****** 上のように数列{6} を定めると, bk=a2k-1+αk (kは自然数) である。 よってm を自然数とすると [1] n が偶数, すなわち n=2mのときはS2m2=(-1)として求め られる。 k=1 k=1 1 [2]nが奇数、すなわちn=2m-1のときは,Sam = Sim-1+α2m より S2m12m-a2mであるから, [1] の結果を利用して Szm-1 が求められる。 このように, nが偶数の場合と奇数の場合に分けて和を求める。 (1) 2-1+a2x=(-1)2k(2k-1)^+(-1)2k+1(2k)2 =(2k-1)-(2k)=1-4k [1]=2mmは自然数)のとき m m S2m=(a2k-1+a2k)=(1-4k) =m-4. m= =1であるから Sn -m(m+1)=-2m²-m =-2(2)-=-n(n+1) [2]=2-1(mは自然数) のとき 2m+1. azm=(-1)2 '(2m)'=-4m² であるから S2m-1=S2m-a2m=-2m²-m+4m²=2m²-m n+1 m=- であるから 2 S,=2(n+1)_n+1=1/2(n+1){(n+1)-1} = n(n+1) [1],[2] から Sn=(-1)+1 2 -n(n+1) (*) (-1) =1, (-1)=-1 ={(2k-1)+2k} ×{(2k-1)-2k} S2m= (a1+a2) +(as+αs) +...... +(a2m-1+a2m) Sm=-2m²-mに 2=1/27 を代入して,n m= の式に直す。 <S2m=S2m-1+a2m を利用する。 S2m-1=2m²-mをnの 式に直す。 451 (*) [1], [2] のS” の式は 符号が異なるだけだから, (*)のようにまとめるこ とができる。 一般項がαn=(-1)n(n+2) で与えられる数列{an} に対して, 初項から第n項ま での和 S を求めよ。 1 章 ③種々の数列

解決済み 回答数: 1
1/1000