学年

質問の種類

物理 高校生

高校1年の物理基礎、加速度についての質問です。 写真下線部のところで、なぜ0.1で割るのか理解できません。加速度とは1秒間に速度がどれくらい増えるのかを表すものですよね? 図では0.040を0.4にすでに秒速に直しているため、1秒に0.16m増えるということになりませんか... 続きを読む

10 第1運動とエネルギー Let's Try! 例題 5 加速度 <-11 斜面に台車を置き, 静かに手をはなして台車を運動させ,このようす を1秒間に50打点打つ記録タイマーでテープに記録した。 台車 このテープの5打点ごとの長さを測定したところ, 右下図のようにな った。この数値を分析して, 台車の加速度の大きさを求めよ。 解説動画 A B D タイマー テーブ E 0.040m 0.056m 0.072m 0.088m 指針 5打点の時間は0.10秒である。 0.10 秒ご との平均の速さを, 各区間の中央の時刻にお ける瞬間の速さとみなしてその差をとると, 同じく 0.10 秒ごとの速さの変化が得られる。 解答 0.10 秒ごとの平均の速さを求め、その差 を0.10秒で割ると, 平均の加速度が得られ る(右表)。 0.10秒ごとの 移動距離 (m) 0.10 秒ごとの速 各区間の平均 平均の加速度 の速さ(m/s) さの変化(m/s) (m/s²) AB 0.040 0.40 0.16 1.6 BC 0.056 0.56 0.16 1.6 CD 0.072 20.72 0.16 1.6 99 DE 0.088 0.88 よって 1.6m/s2

回答募集中 回答数: 0
数学 中学生

(5)の(ア)と(イ)の解説お願いします!!

4 右の図のように, 東西にの 太郎さん 花子さん びるまっすぐな道路上に 地点Pと地点Qがある。 太郎さんは地点Qに向 かって,この道路の地点Pよ り西を秒速3mで走っていた。 西 -東 花子さんは地点Pに止まっていたが, 太郎さんが地点Pに到着する直前に,この道路を 地点Qに向かって自転車で出発した。 花子さんは地点Pを出発してから8秒間はしだいに 速さを増していき、 その後は一定の速さで走行し, 地点P を出発してから12秒後に地点Q に到着した。 花子さんが地点P を出発してからx秒間に進む距離をym とすると, xとyと の関係は下の表のようになり, 0≦x≦8の範囲ではxとy との関係は y=ax2 で表され るという。 x (F) 0 ア 8 10 *** 12 y (m) 0 4 16 24 イ 次の(1)~(5)の問いに答えなさい。 (1) a の値を求めなさい。 (2) 表中のア, イにあてはまる数を求めなさい。 (3) xの変域を 8 ≦x≦12 とするとき と との関係を式で表しなさい。 (4)xyとの関係を表すグラフをかきなさい (0≦x≦12) (5) 花子さんは地点P を出発してから2秒後に, 太郎さんに追いつかれた。 (ア) 花子さんが地点Pを出発したとき, 花子さんと太郎さんの距離は何m であったかを 求めなさい。 (イ) 花子さんは太郎さんに追いつかれ, 一度は追い越されたが,その後, 太郎さんに追い ついた。 花子さんが太郎さんに追いついたのは, 花子さんが地点Pを出発してから何 秒後であったかを求めなさい。

回答募集中 回答数: 0
数学 中学生

解き方わからないので教えて欲しいです

ートテスト④ (2次関数)を以下の日程で行います。 全クラス 期末テスト後最初の授業 (2次方程式と一緒にやります) 追試 22日 (金) 放課後3-3 問題は以下の通りです。 2学期の成績は、 レポートテスト次第 3/4 1. 関数y=ax2 のグラフの特徴を2つあげなさい。 どの2つをかいてもよい。 (完答1点) 2.2次関数y=2x24x+3のグラフの書き方。 (1点×2) ※既習事項を生かしての穴埋めになっていますが、 グラフの書き方を調べておきましょう。 3.図の長方形ABCD は、 AB=4cm、AD=2cmであり、 辺AB, CDの中点をそれぞれE,Fとし、線分 E Fをひく。 2点P,Qは、同時にAを出発し、Pは毎秒1cmの速さで辺上をA→E→B→Cの順に動き、 Cで停止する。 Q は毎秒1cmの速さで辺や線分上をA→D→F→Eの順に動き、Eで停止する。 P, Qが出発してから秒後の三角形APQの面積をcmとして、その変化の様子を調べる。 次の問に 答えなさい。 ただし、3点A, P,Qが一直線上にあるとき、 = 0 とする。 (1点×4) (1)x=3のとき、 の値を求めなさい。 (2)≦x≦6のとき、y=0のとき、x=t である。tの値を 求めなさい。 (3) 4≦x≦tのとき の式で表しなさい。 (4)P,Q が出発してから停止するまでの、との関係を表す グラフを図にかきなさい。 D 1 E 1.3はについては、まったく同じ問題です!2は調べて準備しておきましょう。 4. 図のように、 △ABC と長方形 DEFGが並んでいます。 長方形を固定し、 点Cが点Fに重なる まで三角形が矢印方向に移動するとします。 三角形の動く速さを秒速1cm、 秒後の重なっている IC 部分の面積をcmとする。 このときの問題。 (1点×3) A 4cm ※(3) はこれ↓ -4cm C (E) 8cm- Acm (3) 問題の条件変更や付け加えを1つ考えて問題をつくりなさい。 また、 問題の意図や解答などを 文章や図で説明しなさい。 4は (3) はそのままです。 (1)~(2)は問題を予想しておきましょう。 L

回答募集中 回答数: 0
数学 中学生

この問題の解説のとこの(1)のとこなんですけど、2xとxをかけるとこはわかるんですけど、なんで2分の1をかけるのかがよく分かりません😢😢誰かわかる方出来れば分かりやすく教えてください😢

さい。 qu misu コ とすると,yはxの 見。 City (1) うなさい。 記号を答えなさい。 -raft: t. (1)(S) Warm Up 点を移動させた図をかいて考える。 右の図のような1辺6cmの正方形ABCD がある。 点Pは, 秒速2cmで周上をAからBを通ってCまで動く。点Qは, 点Pと同時に出発して、 秒速1cmで周上をAからDまで動く。 点P,QがAを出発してからご秒後の△APQの面積をμm² と して、次の問いに答えなさい。 (1) 点Pが辺 AB上にあるとき,yをェの式で表しなさい。また, xの変域も書きなさい。 P12-1371-217- 6cm 017 (7%)(cm A (2)点Pが辺BC上にあるとき,”をxの式で表しなさい。また,xの変域も書きなさい。 (3)との関係をグラフに表しなさい。 解説 (1) 点Pが辺 AB上にあるとき 右の図のようになる。 点Pは秒速2cmで動くので, AP=2xcm 点Qは秒速1cmで動くので, AQ=xcm よって,y=2xxxx1212 C 4 'B み 17/0 6cm D C y=x² また,点PがAにあるのは0秒後, 点PがBにあるのは3秒後なので xの変域は, 0x3 Q. TCm 点Pが両端にある A 12cm P->>> (x=0) ときの時間を考える 'B →(x=3) 2919x20m 関数y=ax

未解決 回答数: 0
1/71