学年

質問の種類

数学 高校生

(2)の問題でaの二乗を求めた時に出た答えを約分しちゃダメな理由とaの二乗から二乗を外さないで計算する理由を教えてほしいです!!

P.210 基本 基本 例題 132 多角形の面積 次のような図形の面積Sを求めよ。 (1) AB=6,BC=10, CD = 5, ∠B=∠C=60°の四角形ABCD (2) 1辺の長さが1の正八角形 CHART & THINKING (1) まずは右のように図をかいてみよう。 基本131 からSを、それぞ 多角形の面積はいくつかの三角形に分割するのが基本方針 だが,対角線 AC, BD のどちらで分割するのがよいだろうか? ACで分割→ △ABCに余弦定理を用いると、線分AC の 長さは求められるが,DACの面積はすぐにはわからない。 BD で分割 → △BCD は BC:CD=2:1, ∠BCD=60° に 注目すると, ∠DBCの大きさや線分 BD の長さがわかる。 これを利用して △ABD の面 積を求めてみよう。 6. 5 60° 60° B 10 C 4章 解 (1) (後半) ロンの公式を用 =4+5+6 から って =√s(s-as- (2) 正八角形の外接円の中心を通る対角線で8つの三角形に分割すればよい。 解答 (1) BCD において, BC=10, CD = 5,∠C=60°から ∠BDC=90° ∠DBC=30° BD=BCsin60°=5√3 6 5√3 157 15 22 30° 15/7 △ABD において ∠ABD= ∠ABC-∠DBC=30° 30° 60℃ 4 よって, 求める面積は B 10 60° S=△BCD+ △ABD _n 150° 150=- =1/23・5・5√3+1/23・6・5v3 sin30°=20√3 (2) 正八角形の外接円の中心を0, 1辺をAB とすると AB=1, ∠AOB=360°÷8=45° OA=OB=α とすると, OAB において, 余弦定理により 12=α²+α2-2aacos 45° 整理して 1=(2-√2)a² s150°=- ゆえに a²=- 1 2-√2 2+√2 2 よって, 求める面積は S=8△OAB=8asin45°=2(√2+1) 8.1/23a'si PRACTICE 132Ⓡ 合同な8個の三角形に分 ける。 A 1 B a 45% a αのまま代入する。 )は鈍角三 次のような図形の面積を求めよ。 (1)AD // BC, AB=5,BC=6,DA=2,∠ABC=60°の四角形ABCD (3)1辺の長さが1の正十二角形 (2)AB=2,BC=√3+1,CD=√2,B=60°,C=75° の四角形ABCD 15 三角形の面積、空間図形への応用

未解決 回答数: 1
数学 中学生

49がわかりません。特に一番とかは苦手なので教えて欲しいです

ものである。 このとき. 次の問いに答えなさい。 (1)a の値を求めると, a=である。 [大成] (2)給水開始から分後の水そう内の水量をyLとす あるとき、水そう②についてのxとyの関係を表す式 を求めなさい。 49 下の図で、四角形ABCDと四角形 EFGHは合同 な台形であり、4点B, C, H, Eはこの順に直線l 上にある。 四角形 EFGHを固定し, 四角形ABCDを 矢印の方向に毎秒2cmの速さで動かす。 点Cが点H と重なってから秒後の2つの台形が重なった部分の 面積をycmとする。 ⑦ 六角形 ⑧ 八角形 数学 (2)会話文中のイウにあてはまる数を答えなさ い。 (3)会話文中のエ~カにあてはまる数を答えなさ い。 (4) 会話文中のキーケにあてはまる数を答えなさ い。 [図形 (1・2年)〕 50 次のそれぞれの図でℓ//mのとき, xの大きさ を求めなさい。 (2) 18° (1) これについて, PさんとQさんが下記のように会話 したあとの問いに答えなさい。 〔豊川〕 27cm D G 5cm 35 [誉] m 180° 32 [桜丘〕 B C H 10cm Pさん: 重なる部分の形はxの値によって変化す るね。 Qさん: 例えば, x=4のとき, 重なる部分の形 はアになるね。 51 下の図において4つの直線k, lm, nがあり、 l/m, linであるとき, xの大きさを求めなさい。 最大 [名古屋大谷〕 k n Pさん: 次は重なる部分の面積について考えてみ よう。 例えば, x=2のときのyの値はど うなるかな。 72° Qさん:まず,どのような形になるかを考えてか ら面積を求めるとよさそうだね。 Pさん:わかった! x=2のとき,y=イウと なったよ。 Qさん:今度は, 重なる部分の面積からxの値を 求めてみるのはどうかな。 Pさん:いいね。 やってみよう。 Qさん:では,y=20になるときのxの値を求め てみて! Pさん: y=20となるときは2回あって、x= とカだったよ。 オ Q さん: よくわかったね。 最後に,yをxの式で 表してみようよ。 Pさん:いいよ。 点Dが点Fと重なってから点A が点Fと重なるまでについて,yをxの 142° x m 52 下の図の△ABCにおいて,∠A=36°であり, 点 Dは∠Bと∠Cの二等分線の交点である。 このとき xの大きさを求めなさい。 T 36° [高専〕 A 式で表すと, y=ーキx+クケとなっ たよ。 (1)会話文中のアにあてはまるものとして適当なも のを,次の①~⑧ の中から選びなさい。 ① 正方形 ② 長方形 ③ ひし形 ④ 平行四辺形 ⑤ 台形 ⑥五角形 B 53 次の問いに答えなさい。 C (1) 十二角形の内角の和は何度か,求めなさい。 [東海学園] 1つの外角の大きさが40°である正多角形は,正 角形ですか。 [名工〕 次のそれぞれの図で, xの大きさを求めなさい。 - 41

未解決 回答数: 1
1/45