学年

質問の種類

数学 高校生

22.1.ウ この記述でも問題ないですか?

44 基本例題 22 根号を含む式の計算(基本) (1) (ア), (イ) の値を求めよ。 (ウ) はがつかない形にせよ。 (ア)√(-5) (1) √(-8)(-2) (2) 次の式を計算せよ。 (ア) √/12+√27-48 (ウ) (2√2-√27) (1)(√11-√3)(√11+√3) (I) (√2+√3+√5)(√2+√3-√5) CHARTを含む式の計算 ①A=|4| 解答 (1) (7) √(-5)² =√/25= √5²=5 (イ)√(-8)(-2)=√16=√4=4 (ウ) α> 0, b<0であるから (¹) √a²b² (a>0, b<0) をつける。 指針 (1) A の取り扱いは,A=|4| とみるのがコツ。 つまり A≧0ならば A=A A <0ならば (1)まず√の中のものを計算。 (ウ) (ab) abの正負を調べる。 (2)を含む式の計算では,「2√3+3√3=(2+3)/」 といったように,の中が同 じ数である項を同類項とみて計算を行う。 00000 ab<0 ①√内の数を素因数分解し, kak√a (k>0, a>0) を用いて, 平方因数を√の外に出す。 √内をできるだけ小さい数にする。 [②] 文字式と同じように計算し, (va) が出てきたらαとする。 ② A'=-A よって √a²b² = √(ab)² = |ab|=-ab (2) (与式=√2・3+√32-3-√/ 4°・3=2√3+3√3-4√3 =(2+3-4)√3=√3 (イ) (与式)=(√II)-(√3)=11-3=8 - (ウ)() P.41 基本事項 SIAH) の中は小さい数に (ア) (-5)^5は誤り! √(-5)^2=|-5|=5として もよい。 (ウ)、(ab)=abは誤り! ●<0のとき ||=-● まず の中を小さい数 にする。 次 指針 (1) CH (1) 解 (2) (3) C

回答募集中 回答数: 0
数学 高校生

4️⃣問1、問2の解説をお願いします

afe+ *+ √5 √5 +1 x+x ①よりは = (8₁² =324 のとき、次の式の値を求めよ。 √5-1 √5 +1 (x + 7/12) ² =100- + L (√5 + 1)(√5 - 1) 324円 5×4×3×2×1 AN (8+18+ S+I+NS A D ④4④ 先生と生徒2人 (メタ君, セコイアさん), 3人の会話を読みながら、 次のアーチには適当な数字を, には 適当な数式を解答欄に答えよ。 ただし, ア, イ, ..., チの一つ一つ には数字が一つずつ対応して入り、 同じカタカナ, アルファベット の枠には同じ数字が入る。 (0) メタ : 高校数学の内容って、難しいけど奥深いよね。 宿題で出された α3 +63+c3-3abcの因数分解は大変だったけど, 面白かったな。 セコ:その問題, 知らないわ... メタ : α3+b3=(a+b)アイ ab(a+b) を利用すればいいんだよ。 α3 +63+c3-3abc ab+00² =(a+b)イ ab(a+b)+c3-3abc = (a+b+c){(a+b)_(a+b)c+c²}-ab(a+b+c) セコ: まずαの板を塗る塗り方は.. 板の塗り方を 先生らしい気づきですね。 高校数学の式変形においては、 「つじつま合わせ」 の作業はよく用いられます。 メタ:あっ、先生。 聞いていたのですか?? 先生:僕は数学の話題が聞こえてくると、職員室で仕事中であっても 駆けつけますよ。まぁ、そんなことより。 僕から問題を出そう。 1- A と因数分解できるよ。 セコ:一見難しそうに見えるけど, 式の前後で等号が成立するように つじつまを合わせることによって答えが導けるのね!! (1) a² + b² +c² の値を求めよ。 セコ: 待って。 私の結果と一致しないわ。 a+b+c=1,ab+bc+ca=-2abc-1 であるとき、 (2) a²+b+c² (3) a+b+c C /B 2 セコ (1) は、a2+b²+c^²=(a+b+cカ (ab+bc+ca) と変形 (2) は、最初に導いた となるわ。 できるから,²+62+c²=キ a+b+c3-3abc = A を用いると、a+b+c- なるわね。 (3) は ...... 分からないわ。 メタ:今日のポイント 「つじつま合わせ」がヒントになるはず...... Z3, a² + b² +c² = (a² + b ² + c²)_ (a²b² + b²c² +c²a²) だから, 答えはサジだ!! 先生: その通りです。 では, もう一つ問題を出そう。 [問2 になったんだけど...... DS 1 x+x+x3+x2 + x +1 を因数分解せよ。 ヒントを与えます。 x1 の因数分解をやってごらん。 メタ : -1=(x+1)(x_1)=B と因数分解できるね。 2. € L 2 byの メタ : そうか, x-1= B だから, (*) を利用すると, 「あるね、 1=(x−1)(x+x+1)=(x+1)(x-1)(x+x+1) メタ:大丈夫だよ。 ++1=2+夕+1一週 と因数分解できるので, 同じ結果になるよ。 セコ: メタくん、 凄いね! でも先生, x の答えにどう結びつくのですか?? 先生: 実は、自然数nに対しては, x"_1=(x-1)(x"-1+x"-2+ …..... + x + 1)... (*) という 等式が成り立つのです。 試しにn= 3,4のときを考えてごらん。 セコ: 本当だ! 3-1=(x-1)(x2+x+1) は, 等式 (*) に n=3 を代入 したものだし、x1=(x+1)(x−1)=(x-1)(x3+x2+x+1) は, 等式 (*) に n=4 を代入したものになっています!! y Z Z 14 X x+x+x3+x2 + x + 1 = | D と因数分解できるんだ! 先生 素晴らしい!! 問2のポイントになった等式(*) も, 両辺のつじ つまを合わせながら同類項整理をすることで、証明できます。 メタセコ : やっぱり, 高校数学って難しい〜 るね。 [2] 1の因数分解の結果が [素 チ 以上で問題は終

回答募集中 回答数: 0
1/4