学年

質問の種類

数学 高校生

数II複素数の問題です。 下の鉛筆でかいてあるとおりD>0では?

つよう 基本 48 重要 例題 50 2次式の因数分解(2) 4x2+7xy-2y-5x+8y+h がx,yの1次式の積に因数分解できるように, 定数kの値を定めよ。 また、 そのときの因数分解の結果を求めよ。 [類 創価大 ] CHART & THINKING 2次式の因数分解 = 0 とおいた2次方程式の解を利用 基本 20,46 「xyの1次式の積に因数分解できる」 とは, (与式)=(ax+by+c) (dx+ey+f) の形に表 されるということである。 また, 与式をxの2次式とみたとき(yを定数とみる), (与式) = 0 とおいた2次方程式 4x2+(7y-5)x-2y2-8y-k)=0の判別式をDとする と与式は x=(zy-s)+√x-(Py-5) の形に因数分解できる。この因 8 8 数x、yの1次式となるのは、Dが(yの1次式) すなわち」についての完全平方式のと きである。 それは, D1=0 とおいて、どのような条件が成り立つときだろうか? 答 ( (与式)=0とおいた方程式をxの2次方程式とみて 4x2+(7y-5)x-(2y2-8y-k)=0 ① の判別式をDとするとである。 83 int 恒等式の考えにより 解く方法もある。 (解答編 P-80=8+ および p.59 EXERCISES 15 参照) D=(7y-5)2+4・4(2y2-8y-k)=81y2-198y+25-16k 与式がxとyの1次式の積に分解されるための条件は,①の 解がyの1次式となること, すなわち D がyの完全平方式 となることである。 D1 = 0 とおいた」の2次方程式 81y2-198y+25-16k=0 の判別式をDとすると D2-(-99)2-81(25-16k)=81{112-(25-16k)} 44 04-81(96+16k) 2-1 0 D2 = 0 となればよいから 96+16k=0よって=-6 このとき, D=81y-198y+121=(9y-11)2 であるから, ①の解は x= __(7y-5)±√(9y-11)-(7y-5)±(9y-11) 8 8 5 ◆ D1 が完全平方式⇔ 2次方程式 D=0が重 解をもつ 計算を工夫すると 992=(9.11)=81・112 よって 音√(9y-11)=|9y-11| であるが, ±がついて いるから, 9y-11 の 対値ははずしてよい。 すなわち x=y-3-2y+2 4 中 (与式)=4x =(x-3)(x-2y+2)}(S) 括弧の前のを忘れ いように。 =(4x-y+3)(x+2y-2)

解決済み 回答数: 1
数学 高校生

左下の青チャートの問題の、(1)について質問があります。 もし右の写真のように放物線の開き具合が極端に大きかった場合、円と放物線の接し方として、チャートの解説の(1)の[1]のようなものは無いのかなと思うのですが、この時に重解を計算しようとするとどうなるのか、また、右の写真... 続きを読む

0000 重要 例題 104 放物線と円の共有点・接点 放物線 y=x2+α と円x+y2=9について,次のものを求めよ。 (1)この放物線と円が接するとき, 定数 αの値 (2)異なる4個の交点をもつような定数αの値の範囲 指針 放物線と円の共有点についても,これまで学習した方針 接点 重解 共有点 実数解 で考えればよい。 この問題では,xを消去して, yの2次方程式(y-a)+y'=9の 実数解,重解を考える。 放物線の頂点はy軸上にあることにも 注意。 (1) 放物線と円が接するとは,円と放物線が共通の接線をも つことである。この問題では, 右の図のように, 2点で接する 場合と1点で接する場合がある。 (2) 放物線を上下に動かし、 (1) の結果も利用して条件を満たす αの値の範囲を見極める。 い点で \接する -34p 定まる。り 2点で接する xを消去すると 次方程式が導かれる。 3y3... =3 (2)の したが (g) 放物 る27 よっ なお、 [1] ya [2] 3- [3] (1) y=x2+α から x2=y-a 解答 これをx2+y2=9に代入して の実 1 f の解り よって y2+y-a-9=0 ...... ① ここで,x'+y2=9から (y-a)+y2=9 x2=9-20 ゆえに [2] a=-3 [1] 放物線と円が2点 [1] で接する場合 2次方程式 ① は②の 範囲にある重解をもつ。 よって、 ①の判別式を みが 重をもてばよい の交点 Dとすると D=0 D=12-4・1・(-a-9) 37 4 =4a+37 であるから 4a+37=0 すなわち 37 a=- 4 13 の異なる方の実 あり (×) 2~ ①から ゆえに、L のグラフと M2 [2] 放物線と円が1点で接する場合 以上から、 求めるαの値は 図から,点 (0,3), (0, -3) で接する場合で a=±3 このとき、①の解は y=-- となり、②を満たす。 2次方程式 py2+gy+r=00 重解は y=-1 a1- 37 4 頂点の座標に注意 ±3 (2) 放物線と円が4個の共有点をもつのは,右の図から, 37 放物線の頂点 (0, α)が,点(0, -3)から点(0, -3) を結ぶ線分上(端点を除く)にあるときである。 したがって _37 <a<-3 4 -3- 2=gly がリニ (2)200 なる2つ (2)

解決済み 回答数: 1
数学 高校生

(1) 判別式Dに=がついてるのはなんでですか? 2つの解と書いてあるから重解になるのは変な気がします。教えてください。

基本 例題 52 2次方程式の解の存在範囲 2次方程式 x2-2px+p+2=0 が次の条件を満たす解をもつように、定数の 値の範囲を定めよ。 (1)2つの解がともに1より大きい。 (2)1つの解は3より大きく,他の解は3より小さい。 指針 2次方程式 x2-2px+p+2=0の2つの解をα,βとする。 (1)2つの解がともに1より大きい。 → α-1>0 かつβ-1>0 p.87 基本事項 2 (2)1つの解は3より大きく,他の解は3より小さい。 → α-3とβ-3 が異符号 以上のように考えると, 例題 51 と同じようにして解くことができる。なお, グラフを 利用する解法 (p.87 の解説) もある。 これについては、 解答副文の別解 参照。 2次方程式x2-2px+p+2=0の2つの解をα,βとし,判別解 2次関数 解答別式をDとする。 D =(-p)² - (p+2)= p²-p-2=(p+1)(p-2) 4 解と係数の関係から a+β=2p,aß=p+2 (1) α>1,β>1であるための条件は D≧0 かつ (α-1)+(β-1)>0 かつ (α-1) (β-1)>0 D≧0 から よって (p+1)(p-2)≥0 p-1,2≦p ...... (a-1)+(β-1)>0 すなわち α+β-2>0 から 2p-2>0 よって>1 ...... f(x)=x2-2px+p+2 のグラフを利用する。 (1) 2 =(p+1)(p-20, 軸について x=p>1, f(1)=3-p>0 から 2≦p<3 YA x=py=f(x) ② 3-p + a 1 B x (α-1)(-1)>0 すなわち αβ- (α+β) +1>0 から p+2-2p+1>0) 89 2 2章 解と係数の関係、解の存在範囲 よって <3 ③ たす 1- 求めるかの値の範囲は, 1, 2, (SF (0. (2)_f(3)=11-5p < 0 から 11 ③の共通範囲をとって 123 P 2≤p<3 の解は (2) α<β とすると, α <3 <βであるための条件は (a-3)(B-3)<0 題意から α =βはあり えない。 すなわち αβ-3(a+β)+9 <0 250 ゆえに p+2-3・2p+9 < 0 よって 11 p> 5

解決済み 回答数: 1
英語 高校生

答え合わせをお願いします🙏 間違っているところを解説して欲しいです。 4(4)は分かりませんでした。 よろしくお願いします🙏

〈二重否定〉次の英文を, 下線部に注意して日本文になおしなさい。 (1) My father never takes a train on a rainy day without losing an umbrella. (私の父は雨の日に決して雨なしで電車に乗りません。 (2) It is not unusual that it rains a lot at this time of the year. この時期にたくさんの雨が降るのは 普通ではありません。 ) (3)The man thought of nothing but making money. その男はお金を稼ぐこと以外何も考えていない。 (4) There is no smoke without fire. mil(火がないとこに煙はたたぬ bundblido m 〈否定の慣用表現〉 次の英文を,下線部に注意して日本文になおしなさい。 (1) We cannot be too careful of our health. asldalego tod (私たちの健康にどんなに注意してもしすぎることはない() (2)When I saw his funny clothes, I couldn't help laughing. (私はおかしな服を見たとき、笑わずにはいられませんでした。 (3) I didn't find my wallet missing until this morning. aablids (私は今朝になるまでは財命をなくしたことに気づかなかった20 (7 but/can/her eved 3 〈否定の慣用表現〉 次の各組の文がほぼ同じ内容になるように,に適する語を書きなさい。 The box was so heavy that I couldn't lift it. He didn't want to work there any longer. (1) The box was hartoo (2) He (3) It (4) He had She will get well soon. heavy for me to lift. ho するよ longer wanted to work there. mid deads be long to she gets well. oatique stup adi ora JUY hardly seen me when he ran away. not As soon as he saw me, he ran away. ) 4 〈否定語のない否定表現〉 次の日本文に合うように,に適する語を書きなさい。 (1) 彼の英語は決して正しくはない。 His English is anything but (2) 彼女はそんなことをするような人ではありません。 She is the last correct. am tasl ad) od blow all person to do such a thing. Tom looks far from happy. ghodon (3) トムはとても幸福そうには見えません。 (4) その本は私には理解できませんでした。 The book was my understanding. (5) 彼らはその集会に出席できませんでした。 They Can't to attend that meeting.

解決済み 回答数: 1