学年

質問の種類

英語 高校生

チャレンジ(5)について質問です。 この文の答えは写真のようになっているのですが、 They will been arriving in Paris the time tomorrow. のように、未来進行形でかくのは駄目でしょうか。

STEP 2 次の日本文に合うように、( )に適語を入れなきい。 father comes home. (②)次のドイツを訪れれば、彼女はそこへ5回行ったことになるだろう。 She ( been there five times Lyrice visits Germany next spring. (3) 私は次の6月で日本に住んで5年になる。 years next June. 終えるまで待ってください。 Please wait untill ( ) to bed by the time my Q2 次の日本文に合うように、 in Japan for five (1) 明日までには雨はやむだろう。 (stopped/it/by tomorrowroom_/wili ). (2) もう1冊本を読めば、私は今10のことになる。 I ( this month/ will/if/have read/1/ten books) read another book. (3) 私の祖母が亡くなって、来年で16年になる。 My grandmother ( dead/for/been/have/16 years/will) next year. Challenge 次の日本語を英語に直しなさい。 (1) あなたは今までに流れ星を見たことがありますか。 (shooting stari. (2) ケビン(Kevin)は日本にどのくらい住んでいますか。 (3) サキは今朝からずっとピアノの練習をしている。 (4) 私は彼から聞くまでにすでに試合の結果を知っていた。 彼らは明日の今ごろはパリ(Paris)に到着しているでしょう。 (6) そのDVDを見終わったら、私に貸してください。

回答募集中 回答数: 0
数学 高校生

(2)で表の波線のところなんで△じゃなくて○なんですか

基本例題 44 連続して硬貨の表が出る確率 次の確率を求めよ。 1枚の硬貨を4回投げたとき,表が続けて2回以上出る確率 (1) 2 1枚の硬貨を5回投げたとき,表が続けて2回以上出ることがない確率 [センター試験] Ip.298 基本事項1 CHARTI OLUTION 3つ以上の独立な試行 (1) は 4つ (2) は5つの独立な試行)の問題でも, 独立なら積を計算が適用できる。また,「続けて~回以上出る確率」の問題では, 各回の結果を記号 (○やx) で表して場合分けをすると見通しがよい。 (1) 何回目から表が続けて出るかで場合分けする。 (2) 「~でない」には余事象の確率 解答 各回について、表が出る場合を◯, 裏が出る場合をx,どちら が出てもよい場合を△で表す。 (1)表が2回以上続けて出るのは, 1回 2回 3回 右のような場合である。 O 4 よって 求める確率は (1)+(1/2) 1+1.(12)=1/1/24 ² ・1+1・ (2) 表が2箇以上続けて出るの は、右のような場合であり, 1回 2回 3 回 4 回 5回 その確率は (2).P+(1/2)・1+1.(1/2) 2.1 ∙1² ・1 19 5 +1)+(1/2)+(1/2)-1/2 よって 求める確率は 5 1-19_13 32 32 = 32 OX OSX × △ MA X₂ A ③ ム 4 × ₂ Q Q O O x × × ○2× X MA X AO O XX X < AO △ 4回 OO AAA ← 1回目から続けて出る。 2回目から続けて出る。 3回目から続けて出る。 (2) 余事象の確率。 301 ← 1回目から続けて出る。 2回目から続けて出る。 3回目から続けて出る。 4回目から続けて出る。 ○○×○○は1回目か ら続けて出る場合に含 まれる。 PRACTICE ... 44 ③ (1) 1枚のコインを8回投げるとき,表が5回以上続けて出る確率を求めよ。 (2) 1回の試行で事象 A の起こる確率をpとする。この試行を独立に10回行ったと きAが続けて3回以上起こる確率を求めよ。 2章 5 独立な試行・反復試行の確率

回答募集中 回答数: 0
数学 高校生

(2)のよって~の計画方法を分かりやすく教えてください。

119 合同式の利用 (2) 0 合同式を用いて,次の問いに答えよ。 例題 (1) 13 MH を9で割った余りを求めよ。 nが自然数のとき, 26F-5+3'" は11で割り切れることを示せ。 (2) CHART SOLUTION αをm²で割った余り まずは a²,a, で合同式を考える (1) 134 (mod 9) であるから, 48 を9で割った余りを考えればよい。 そして、 4=1 (mod 9) または A-1 (mod 9) となるkを見つけることが できれば,累乗はすぐに計算できる。 (2) 232-1 (mod !!) ではあるが,指数に文字が入っているため、うま く利用できない。 (1) 134 (mod 9) であり 指数がnの1次式になっている項の和+4+6++.....については,まず d", b,..... の合同式を考えるとよい。 4167 (mod 9) よって 14² 47.1 28 1 (mod 9) 13100 4100 (4³) 33.4 13.44 (mod 9) よって ゆえに 求める余りは 4 (2) 2649 (mod 11) 39 (mod 11) であり 26-5-20-11+1 (29) 2 00000 ((2) 類 学習院大) 32"=(3²)" 20-6+32" (2) "1.2+ (32)" 9"-¹.2+9" =9"-¹(2+9) =9"~1.110 (mod 11) 418, 419 PRACTICE 1199 421 ← 132, 13, ·····を考えて もよいが. の方が計算しやすい。 99⁰-1.9 -1≧0であるから 97-1は整数。 ゆえに,297-5 +327は11の倍数である。 参考 (2) は、数学Bで学習する 「数学的帰納法」という証明法を用いて証明することも できる。

回答募集中 回答数: 0
数学 高校生

(3)解説お願いします🙇🏻‍♀️

カ と 12 重要 例題 3 同じものを含む円順列 じゅず順列 ガラスでできた玉で, 赤色のものが6個, 黒色のものが2個, 透明なものが 1個ある。 玉には,中心を通って穴が開いているとする。 (1) これらを1列に並べる方法は何通りあるか。 これらを丸く円形に並べる方法は何通りあるか。 これらの玉に糸を通して首輪を作る方法は何通りあるか。 602 CHART O OLUTION 解答 (2) 回転したとき他の円順列と一致しないように, 透明な玉1個を固定する。 (3) じゅず順列の総数を求める問題。次のように分けて考える。 「左右対称である円順列」と「左右対称でない円順列」 8.7 8! 6!2! 2・1 9! 6!2! (1) 1列に並べる方法は (2) 透明な玉1個を固定して, 残り8個 を並べると考えて 裏返すと 自分自身 -=28(通り) PRACTICE... 31 9 STREA 9.8.7 2・1 4通り よって、左右対称でない円順列は 28-424 (通り) この24通りの1つ1つに対して、裏 返すと一致するものが他に必ず1つ ずつあるから、首輪の作り方は +24=16(通り) (3) (2) 28通りのうち、右下の図のOGAIO ように左右対称になるものは D.TOURE -252 (通り) レープに 基本 17, 重要 21 裏返すと 自分以外 の円順列 ◆同じものを含む順列。 279 ◆赤玉6個, 黒玉2個を1 列に並べる場合の数。 inf 解答編 p.216 にすべ てのパターンの図を掲載し た。 左右対称でないものは、 裏返すと一致するものがペ アで現れることを確認でき るので参照してほしい。 列に並べる方法は 1章

回答募集中 回答数: 0