学年

質問の種類

数学 高校生

二次方程式の解についての質問です。 マーカー部分ですが、なぜこの形になるのかがわからないです。②の式の左辺を変形したらいいと書いていますが、どう変形したらそうなるのか教えて欲しいです。 よろしくお願いします🙇🏽

発例題 展 52 2次方程式の解についての証明問題 <<< 基本例題46 ① 000 a b は定数とする。 方程式 (x-a)(x-b)+x+1=0 の2つの解をα,Bとす。 ると,方程式(x-a)(x-β)-x-1=0 の2つの解は a, b であることを証明 せよ。 CHART 解と係数の問題 GUIDE 解と係数の関係を書き出す すると、この例題の 一解答の方程式 ①,②から。 条件は α+β=a+b-1, αβ=ab+1 結論は a+b=a+β+1,ab=aβ-1 となり,③ から ④を示すとよいことになる。 ...... 4 解答 (x-a)(x-b)+x+1=0 の左辺を展開して整理すると x2-(a+6-1)x+ab+1=0 ① この2つの解がα, β であるから,解と係数の関係により ゆえに a+β=a+b-1, aβ=ab+1 a+b=a+β+1, ab=aβ-1 このことは, a, b が2次方程式 x2-(a+β+1)x+αβ-1=0 すなわち (x-α)(x-β)-x-1=0 の解であることを示している。 Lecture 因数分解の利用 x²+px+g=0 の2つの 解がr,s ⇔ r+s=-p rs=q GUIDE の方針により, 1 を移する。 FotstJ ■x2-(和)x+ (積) = 0 ②の左辺を変形。 2次方程式の解α, β に対して, (x-α)(x-B), (-a) (-B), (α-)(B)の形の式 が出てきたときは 平 ax2+bx+c=0 の2つの解がα, ßax+bx+c=a(x-a)(x-β) を利用することで, あざやかに解決できることがある。 [上の例題の別解] (x-a)(x-b)+x+1=0 の2つの解がα, β であるから 左辺は, (x-a)(x-b)+x+1=(x-a)(x-B)と因数分解できる。 (x-a)(x-B)-x-1=(x-a)(x-b) ゆえに よって, ← 移項 (x-a)(x-β)-x-1=0 の2つの解は a, b である。 J 全宗

解決済み 回答数: 1
数学 高校生

次の問題で何故次の青線の様なことが言えるのでしょうかどなたか解説お願いします🙇‍♂️

xの方程式 4+ (a+1)2x+1+α+ 7 = 0 が異なる2つの正の解をもつよう な定数 αの値の範囲を求めよ。 (ReAction 文字を置き換えたときは、その文字の範囲を考えよ 例題177) 思考プロセス t = 2x とおく 4°+(a+1)2x+1+α+ 7 = 0 が 異なる2つの正の解をもつ t°+2(a+1)t+α+ 7 = 0 が どのような解をもつか? 対応を考える 1つのtの値に1つのxの値が対応 例題179との違い... f(t) = αの形にすると, 式が複雑になることに注意。 解 4+ (a+1)2% +1 + α+7 = 0 ... ① とおく。 例題 174 2 = t とおくと, x>0より t>1であり, ① は 底を2にそろえ, 2 = t とおく。 t▲ t° + 2 (a + 1)t + α + 7 = 0 ..② t=2* ... ここで, t = 2 を満たすx は, t> 1 である tの値1つに 対してx>0であるxの値1つが存在する。 よって, xの方程式 ①が異なる2つの正の解をもつのは、 tの2次方程式 ②が1より大きい異なる2つの解をもつ ときである。 f(t) = f+2(a+1)t + α +7 とおくと, _oy=f(t) のグラフがt軸と t>1の範 囲で2点で交わるのは,次の [1]~[3] を満たすときである。 YA y=f(t)| -(a+1) 0 1 t [1] f(t) = 0 の判別式をDとすると D> 0 D 4 = (a+1)-(a+7)= d+a-6 a + α-6>0より (a+3)(a-2)>0 よって a <-3, 2 <a [2] y=f(t) の軸が t>1の部分にある。 y = f(t) の軸は t = -(a+1) であるから -(a+1)>1 よって a<-2 [3] f(1) > 0 であるから (4) f(1) =3a+10 > 0 10 よって a>- ・⑤ 3 2次方程式の解と係数の 関係 a+β = -2(a+1) aβ = a +7 を利用して |判別式 D0 (a-1)+(β-1)>0 (a-1) (-1)>0 からαの値の範囲を求め てもよい。 ② を t+2t+7 = α(2t-1) と分離して,y=f+2t+7 とy=α(-2t-1) が t > 1 で異なる2つの共 有点をもつようなαの値 の範囲を求めてもよい。 ~⑤ より, 求めるαの値の範囲は 10 <a<-3 3 10 -2 2 3 -3

解決済み 回答数: 1
数学 高校生

次の問題で青いところがよく分からないのですがどなたか解説お願いします🙇‍♂️

xの方程式 4+ (a+1)2x +1 +α+ 7 = 0 が異なる2つの正の解をもつよう な定数αの値の範囲を求めよ。 (ReAction 文字を置き換えたときは、 その文字の範囲を考えよ 例題177) 思考プロセス t=2^ とおく 4*+(a+1)2x+1+α+ 7 = 0 が 異なる2つの正の解をもつ t+2(a+1)t +α+ 7 = 0 が どのような解をもつか? 対応を考える 1つのtの値に1つのxの値が対応 例題179 との違い... f(t) =αの形にすると, 式が複雑になることに注意。 ... 解 4% + (a+1)2+1+α+7= 0 ・・・ ① とおく。 例題 2x = 174 = t とおくと, x > 0 より t>1であり, ① は t + 2 (a + 1)t +α+ 7 = 0 ... ② ここで, t = 2 を満たすx は, t>1であるtの値1つに 対して x>0であるxの値1つが存在する。 よって, xの方程式 ① が異なる2つの正の解をもつのは, tの2次方程式②が1より大きい異なる2つの解をもつ ときである。 y y=f(t)| 2にそろえ, 2 = t とおく。 y t=2* IA -(a+1) 2次方程式の解と係数の 関係 f(t) = f+2(a+1)t + α +7 とおくと, y=f(t) のグラフがt軸と t>1の範 囲で2点で交わるのは,次の [1]~[3] を満たすときである。 ○ 1 [1] f(t) = 0 の判別式をDとすると D> 0 D = (a+1)-(a+7) = a + α-6 4 +α-6>0より よって a <-3, 2 <a (a+3) (a-2) > 0 ③ [2] y=f(t)の軸が t>1の部分にある。 y=f(t) の軸は t = -(a+1) であるから -(a+1)>1 よって a<-2 [3] f(1) > 0 であるから f (1) = 3a+10 > 0 10 よって a> - ..⑤ 3 a+β = -2(a+1) aẞ = a+7 を利用して 判別式 D0 (a-1)+(-1)>0 (a-1)(-1)>0 からαの値の範囲を求め てもよい。 ② を t°+2t+7 = α(−2t-1) と分離して, y = t + 2t + 7 とy=α(-2t-1) が t>1で異なる2つの共 有点をもつようなαの値 の範囲を求めてもよい。 ⑤ より, 求めるαの値の範囲は 10 <a<-3 3 10 3 3 -2 2

解決済み 回答数: 1
数学 中学生

解き方わからないので教えて欲しいです

ートテスト④ (2次関数)を以下の日程で行います。 全クラス 期末テスト後最初の授業 (2次方程式と一緒にやります) 追試 22日 (金) 放課後3-3 問題は以下の通りです。 2学期の成績は、 レポートテスト次第 3/4 1. 関数y=ax2 のグラフの特徴を2つあげなさい。 どの2つをかいてもよい。 (完答1点) 2.2次関数y=2x24x+3のグラフの書き方。 (1点×2) ※既習事項を生かしての穴埋めになっていますが、 グラフの書き方を調べておきましょう。 3.図の長方形ABCD は、 AB=4cm、AD=2cmであり、 辺AB, CDの中点をそれぞれE,Fとし、線分 E Fをひく。 2点P,Qは、同時にAを出発し、Pは毎秒1cmの速さで辺上をA→E→B→Cの順に動き、 Cで停止する。 Q は毎秒1cmの速さで辺や線分上をA→D→F→Eの順に動き、Eで停止する。 P, Qが出発してから秒後の三角形APQの面積をcmとして、その変化の様子を調べる。 次の問に 答えなさい。 ただし、3点A, P,Qが一直線上にあるとき、 = 0 とする。 (1点×4) (1)x=3のとき、 の値を求めなさい。 (2)≦x≦6のとき、y=0のとき、x=t である。tの値を 求めなさい。 (3) 4≦x≦tのとき の式で表しなさい。 (4)P,Q が出発してから停止するまでの、との関係を表す グラフを図にかきなさい。 D 1 E 1.3はについては、まったく同じ問題です!2は調べて準備しておきましょう。 4. 図のように、 △ABC と長方形 DEFGが並んでいます。 長方形を固定し、 点Cが点Fに重なる まで三角形が矢印方向に移動するとします。 三角形の動く速さを秒速1cm、 秒後の重なっている IC 部分の面積をcmとする。 このときの問題。 (1点×3) A 4cm ※(3) はこれ↓ -4cm C (E) 8cm- Acm (3) 問題の条件変更や付け加えを1つ考えて問題をつくりなさい。 また、 問題の意図や解答などを 文章や図で説明しなさい。 4は (3) はそのままです。 (1)~(2)は問題を予想しておきましょう。 L

回答募集中 回答数: 0