学年

質問の種類

数学 高校生

19の(2)の問題で、もし、分ける部屋が区別のつかない3つの部屋なら、3!で割る で合ってますか??

8889 例題 19 重複順列 00000 (1) 0, 1,2,3の4種類の数字を用いて, 3桁以下の正の整数は何個作れるか。 ただし,同じ数字を繰り返し用いてもよいものとする。 (2)7人を,2つの部屋 A, B に入れる方法は何通りあるか。 また, 区別をし ない2つの部屋に入れる方法は何通りあるか。 ただし, それぞれの部屋に は少なくとも1人は入れるものとする。 CHART & THINKING 1章 p.279 基本事項 3. 基本14 2 順列 重複順列 n™ (i) 数字を並べてできる整数 各桁の数字の条件に注目 最高位に0は使えないことに注意しよう。 0 以外の 4個から重複を許し 3通り て2個取って並べる 3桁 2桁 1桁, それぞれの場合に分けて考えよう。 (2) 区別をなくす場合 同じものは何通りあるか考える →4通り (前半) まず, 空の部屋があってもよいとして、後で空になる場合を除く。 (後半) 区別をなくすと同じ入れ方になるものは、例えば、次のような2通りずつある (=「ペア」で現れる)ことに注意しよう。 A B A B 例 と 1 2 3 4 5 6 7 567 1234 じゃない。 (1) 3桁の整数は, 百の位の数字が0以外であるから 3×4=48 (個) 2桁の整数は 3×4=12 (個), 1桁の整数は 3個 よって, 3桁以下の正の整数は 48+12+3=63 (個) 2桁の整数は百の位の数字が 0, 1桁の整数は百と十 の位の数字が 0 とすると, 3桁以下の整数は 43個 (別解 000 になる場合を除いて 43-1=63 (個) (2) 空の部屋があってもよいものとして7人をA,Bの部屋 に入れると,その方法は 27=128 (通り) 一方の部屋が空になる場合を除くと 128-2=126 (通り) A,Bの区別をなくすと 126-263 (通り) 百の位の数字の選び方 は0以外の3通りで、 十 の位、一の位は4種類の 数字のどれでもよい。 例えば 012 2桁の整数12 003...... 1桁の整数3 W 異なる2個から重複を許 して7個取り出して並 べる順列の総数と同じ。 区別をなくすと、 一致す る場合がそれぞれ2通 りずつある。 PRACTICE 193 (1) 0, 1,2,3,4,5の6種類の数字を用いて 4桁以下の正の整数は何個作れるか。 ただし、同じ数字を繰り返し用いてもよい。 (2) 9人を, 区別をしない2つの部屋に入れる方法は何通りあるか。 ただし, それぞ れの部屋には少なくとも1人は入れるものとする。

解決済み 回答数: 1
数学 高校生

このような問題の場合って毎回aの値は=0 orゼロ以上orゼロ以下のように計算すればいいのですか? それとも問題文から読み取って場合によってaの範囲を変えて計算するのですか? 教えていただきたいです

DOO 移動し 重要 例題 56 1次関数の決定(2)の調 00000 関数 y=ax-a+3 (0≦x≦2) の値域が1≦y≦b であるとき、定数a,b の 値を求めよ。 基本 事項 5 CHART & THINKING HO (株) グラフ利用 端点に注目 1次関数とは書かれていない。 また, 1次の係数αの符号がわからないから,グラフが右上 がりか,右下がりかもわからない。このようなときは,αが正, 0, 負の場合に分けて考えて みよう。 →a>0 のときグラフは右上がり, a < 0 のときグラフは右下がり。 a>0,a=0,a<0 の各場合において値域を求め, それが 1≦y≦b と一致する条件から a,bの連立方程式を作り,解く。 このとき,得られたαの値が場合分けの条件を満たしているかどうか確認することを忘れ ずに。 解答 x=0 のとき y=-a+3, [1] α > 0 のとき x=2のときqy=a+3 Te& [1] YA +3 この関数はxの値が増加するとyの値も増加するから, x=2で最大値 6, x=0 で最小値1をとる。 101 3章 7 関数とグラフ よって mat=1,mat=1 だと、上記の通りに これを解いて a=2, b=58=(8) Vだと、上記の通りにM1 -a+3 ならないが、直線なので ア 10 2 x これは α0 を満たす。ス のグラフ =x2の係 て,別解 称移動さ えて求め m [2] a=0 のとき THE 不等号がそのまま 反映される。 この関数は y = 3 a=0 の場合を忘れない ように。 8+(-x)=fa このとき,値域は y=3であり, 1≦y≦b に適さない。 [3] a < 0 のとき ← 定数関数 131 YA この関数はxの値が増加するとyの値は減少するから, x=0で最大値 6, x=2で最小値1をとる。 -a+3 b よって -a+3=b, a+3=1 これを解いて la+3 a=-2,6=5 +(8-x)=0 2 これは α <0 を満たす。 (0-x)= [1]~[3]から (a,b)=(2,5), (-2,5

解決済み 回答数: 1
数学 高校生

どうしてS(2n)でやるんですか?

63 32 部分和 San-1 S2 を考える ののののの 1 無限級数 1 1 + +.. ****** 32 22 33 の和を求めよ。 基本31 2章 無限級数 国の和であ ように してもより →0, のとき CHART & THINKING 無限級数 まず部分和 S 基本例題31と同じと考えて,第n項を (1) とし,和Sを 右のように求めてはいけない。 ここでは,( )がついていないから, やはり, S を求めて n→∞の方針で解く。 ところが, S は奇 数項までと偶数項までで異なるから, nの式では1通りに表されない。 S=- 12 1 よって, S2n-1, S2 の場合に分けて調べる。 S21-1 は S27 を用いて表すことを考えよう。 [1] limS2-1 = limSzn = S ならば limS=S →8 [2] limS2-1≠lim Szn ならば {S} は発散 8818 注意 無限級数の計算では、勝手に()でくくったり, 項の順序を変えてはならない! この無限級数の第n項までの部分和を S とする。 S2n=1- Sz.-1-1+1-3+1-31+ 2 32 22 = (1 + 1/2 + 1/2 + ----+ 2 1 -1) 22 ・+ 1 3 + + 32 +......+ 33 3n 1 1-3 1 1 2-1 3" ←部分和 (有限個の和) な ら()でくくってよい。 初項1,公比の等比数 列の和。 2 1 1 2 数列の和。 1 1 2% 2 3" 2 よって lim S2n=2- 1 3 n→∞ 2 2 また lim S27-1=lim(S2n+3)= lim S2n+lim n→∞ n→∞ 718 lim Szn=lim S2n-1 →∞ 3 2 であるから, 求める和は この例題の無限級数 α+b+a2+b+....+an+bn+ の和は,無限級数 inf. =0,lim/ -=0 = lim S2nS2n-1=S2n-azn n-00 - S.-(-3) =S2n- {San} も {3} も収束する。 (a+b)+(az+bz)+…+(an+6m)+・・・・・・ の和と同じ結果になる。 結果が異なる場合に ついては, PRACTICE 32 の解答編の inf. や EXERCISES 30 を参照。 PRACTICE 323 2 2 lim 1-∞0 271 ... B 3" n→∞ 2 3|2 七級数の収束薬品 または[r]<1 和は を確認する。 次の無限級数の和を求めよ。 (12/2/+/+//+//+/12/23+1/2/3+..... (2) 1++++++++ 3 4 9 8 27 +...... 864A 出

解決済み 回答数: 1