学年

質問の種類

数学 大学生・専門学校生・社会人

(1)から分かりません。なぜこのようなグラフになるんでしょうか?

123 3章 8 関数とグラフ つけ。 かけ。 重要 例題 立つ。これを場合分けに利用 幅1の範囲で区切り ≦2x<2,2x=2で場合分け、 1≦x<2, x=2で場合分け、 =-2 -2-101 きy=-2 (2) y=-1 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると 次の関数のグラフをかけ。 (1) y=f(x) 指針 (2)y=f(f(x)) 2x (0≦x<2) f(x)= 8-2x (2≤x≤4) 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2)f(f(x)) f(x)のxにf(x)を代入した式で、 f(x) <2のとき2f(x) f(x)のとき 8-2f(x) (1)のグラフにおいて,0≦f(x) <2となるxの範囲と, 2≦f(x)≦4 となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 (2f(x) (0≦f(x)<2) (2) f(f(x))= 18-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき 1≦x<2のとき 2≦x≦3のとき f(f(x))=2f(x)=2.2x=4x f(f(x))=8-2f(x)=8-2.2x =8-4x f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) 変域ごとにグラフをかく。 < (1) のグラフから,f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は y=0 1≦x<2なら =16-4x f(x)=2x y=1 よって, グラフは図(2) のようになる。 y=2 (1) (2) y ya =x+1 -1 2 A M O 1 2 3 4 x 0 1 2 3 4 x 2≦x≦3なら f(x)=8-2x のように, 2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 -2=0 an x= ntpと表されるとき、 とき, 01より xの整数部分を表す記号であ 参考 (2) のグラフは,式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線・細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 とする。 8から2倍を 引く 4 2 0 4 x 2倍する 練習 関数f(x) (0≦x<1) を右のように定義するとき, ◎ 71 次の関数のグラフをかけ。 2x (0 ≤ x < 1/1) f(x)= (1) y=f(x) 2x-1 (2) y=f(x)) 11/1/1≦x<1)

回答募集中 回答数: 0
数学 高校生

四角で囲った部分がわからないです(Xの解) 特に二枚目の丸で囲んだ部分はどうしてこういうふうに言えるのかわからないです

354 基本 例題 223 係数に文字を含む3次関数 [類 立命館大] la を正の定数とする。 3 次関数 f(x)=x-2ax2+αxの0≦x≦1 における最大 値M (α) を求めよ。 基本 219 重要 224 指針 文字係数の関数の最大値であるが, p.350 基本例題 219 と同じ要領で,極値と区間の 端での関数の値を比べて最大値を決定する。 f(x) の値の変化を調べると,y=f(x) のグラフは右図のよう になる(原点を通る)。ここで, x=/1/3以外にf(x)=f(1/2)を 満たすx (これをαとする) があることに注意が必要。 a よって、1/3,α (/1/<α) が区間0≦x≦1に含まれるかどうか 3' a 3 <a a で場合分けを行う。 y4 f() O a a f'(x)=3x²-4ax+α²=(3x-a)(x-a) 解答 f(x) = 0 とすると x=147, a a 3' a>0であるから,f(x)の増減表は次のようになる。 以上から (x)はx=3 M(a)-( <a<1 すなわ <a< 2 のとき, f(x)はx=1で最大と M(a)=f(1) 0<a M Åsas 3 まずは、f'(x)=0を満た すxの値を調べ, 増減表 をかく。 <a>0から a ・<a ... ゆえに X- a x=/1/3であるから x x f'(x) + a 3 0 f(x) 大 a 0 + 極小 ここで,f(x)=x(x2-2ax+α²)=x(x-a)2から (+)-(-a), F(a)=0 3 27 -α 大 = 12/17 を満たすxの値を求めると, =1/1/3以外にf(x) 4 f(x)=から 4 x³-2ax² + a³x-17 a²=0 x3-2ax2+αx- α=0 (x-3) ( x − 4 27 (*) a)=0 0= CLAQ (*) 曲線 y=f(x) と直線 =は、x=号の y= 点において接するから、 f(x)-27 a³ 13(x- 3次関数の対称性の利目 樹 344 の参考事項で紹 の値を調べることもで 2つの極値をとる点 座標は 信 X=- 83 23 なお、p.344 で紹介 で割り切れる。このこと を利用して因数分解する とよい。 よって 3 -2a a² 0-27 a 5 Q2 3 9 x=- a 5 4 1 a a² 0 よって,f(x)の0≦x≦1における最大値 M (α) は,次のよ うになる。 3 9 13 としておきたい。 a 4 3 9 [1] 1< // すなわち α>3のとき 4 1 a -= M(a)=f(1) f(x)はx=1で最大となり 1 a²-2a+1 O 1 ・最大 大人の方針。 [1]は区間に極値をとる xの値を含まず、区間の 右端で最大となる場合 指針」 a a x 3 222は正の

未解決 回答数: 0