学年

質問の種類

数学 高校生

至急  明日テストなんですが数Aのプリントに解説がないので、分かるやつだけでも全然いいので解説(途中式とか)して欲しいです!

2学期 1-1, 2, 3 数学A 中間試験用演習プリント~レベルやや難~ 1 A, B, C の3人がじゃんけんを1回するとき, 次の場合の確率を求めよ。 (1) Aだけが負ける。 (1)1/1 1 (2) 3 (2)1人だけが勝つ。 24人がじゃんけんを1回するとき, 次の確率を求めよ。 (1) 1人だけが勝つ確率 (3) あいこになる確率 (2)2人が勝つ確率 ( )組( ) 番 名前( 73個のさいころを同時に投げるとき, 次の場合の確率を求めよ。 (1) 出る目の最大値が3以下である。 37 解答(1)/1/ (2) 8 216 (2) 出る目の最大値が4である。 8 正六角形ABCDEF の頂点を動く点Pが点Aの位置に ある。 1個のさいころを投げて, 3の倍数の目が出たと きには, Pは左回りに1個次の点へ移り、他の目が出た ときはPは右回りに1個次の点に進む。 Br F 16 解答 (1) 4 27 2 13 (2) (3) 9 27 3 直線上に点Pがあり, 1枚の硬貨を投げて, 表が出たら右に2m, 裏が出たら左に2m だけ進む。 硬貨を6回投げたとき, 次の確率を求めよ。 (1) 点Pがもとの位置から右に4m (2) 点Pがもとの位置に戻る (1)3回投げたとき, 点Pが点Bにある確率を求めよ。 (2) 4回投げたとき, 点Pが点Aに戻る確率を求めよ。 (3) 6回投げたとき, 点Pが点Aに戻る確率を求めよ。 D 解答 (1) 20 8 (2) (3) 27 25 81 E 解答 (1) 15 64 5 (2) 16 4 AとBがテニスの試合を行うとき, 各ゲームで A,Bが勝つ確率は,それぞれ 喙号で 9 当たりくじ4本を含む10本のくじをA,Bがこの順に1本ずつ引く。 ただし, 引いたく じはもとに戻さないものとする。 あるとする。 3ゲーム先に勝った方が試合の勝者になるとき, Aが勝者になる確率を求め よ。 Aが当たりを引いたとき, Bが当たりを引く条件付き確率は ア イ であるから, A, B が2人とも当たりを引く確率は ウ である。 したがって, Bが当たりを引く確率は エオ 解答 64 81 5 赤玉1個と白玉2個と青玉3個が入った袋から1個の玉を取り出し, 色を調べてからもと に戻すことを5回行う。このとき, 赤玉が1回, 白玉が2回, 青玉が2回出る確率を求め よ。 5 解答 36 3個のさいころを同時に投げるとき, 次の確率を求めよ。 (1) 出る目の最小値が3以上である確率 (2) 出る目の最小値が3である確率 解答 (1) 27 87 37 (2) 216 カ キ である。 ク また, A, B に続き, Cがくじを引くとき, Cが2本目の当たりを引く確率は で ケ ある。 (ア) 1 解答 (イ) 3 (ウ) 2 (カ) 2 (ク) 113 (エオ) 15 (キ) 5 (ケ) 5

回答募集中 回答数: 0
理科 中学生

(3)が解説をみても分からないので、教えていただきたいです!

思考力問題にチャレンジ 混合物の分離(神奈川改) 2種類の物質Aと物質Bについて, 100gの水にとける質量と温 100180 度の関係を調べる実験を行った。 結果は, 表1と図のようであった。 表1 100gの水にとける物質の質量[g] g 160 の 水 140 120 け 100 80 質 60 の A 20 °C 40 °C 60°C 80 °C B 物質 A 32 64 109 169 40 物質 B 35 36 37 38 量 20 次は,物質Aと物質Bの混合物について考えている先生と g 20 40 60 温度 [C] 80 物質 A 物質目 混合物 I 混合物 ⅡI 混合物ⅢII 100g 30g 100g 38g 32 g 35g KさんとLさんの会話である。 先生「物質Aと物質Bは温度によるとけ方が異なりますね。 表 2 とくちょう この特徴を利用して、 表2のような混合物から物質Aや 物質Bを1種類ずつ取り出す方法を考えてみましょう。 物質 A, B は,混合したまま同じ水にとかしても,それ ぞれの溶解度は変化しないと考えます。 また, 水溶液の 温度を変化させても、水の質量は変化しないと考えます。」 Kさん「混合物を,100gの水に入れて温度を上げ, すべてとかした後にゆっくり20℃まで冷 すれば,物質Aの結晶のみを取り出せると思います。」 Lさん 「なぜ物質Bは出てこないといえるのですか。」 Kさん 「20℃に冷却しても,(X)ため、物質Bはすべてとけたままであると考えられるからです 先生 「そうですね。 では、混合物IIの場合はどうでしょう。」 Lさん 「先ほどのように, 混合物IIを100gの水に入れて温度を上げ, すべてとかした後にゆっく 20℃まで冷却すると結晶が出てきますが、 この結晶は物質Aの結晶と物質Bの結晶が混 たものと考えられます。」 Kさん「この結晶を, ろ過して取り出し乾かした後, 100gの水に入れて温度を上げ、すべてと て再び20℃まで冷却すれば,物質Aのみの結晶が (Y) g得られるはずですよ。」 先生「そうですね。 では, 混合物Ⅲから物質Bの結晶のみを得る方法はありませんか。」 Lさん 「混合物Ⅲを100gの水に入れて温度を上げ, すべてとかした後, (Z)ことによっ 質Bの結晶のみを取り出せると思います。」 先生「そうですね。 では, 混合物 I, II, II を使って実験してみましょう。」 2.① 記述文中の(X)に,物質Bがすべてとけたままであると考えられる 理由を、前後の語句につながるように20字以内で書きなさい。 (1) (2)文中の(Y )に適する値を書きなさい。 (3)文中の(Z)に最も適するものを次のア~エから選びなさい。 ア. 20℃以下に冷却する 100gから イ. 20℃に保ちながら水を20g 蒸発させる ウ. 40℃に保ちながら水を60g蒸発させる エ.60℃に保ちながら水を50g蒸発させる 74 ポイント (3)イは20℃, 80gの水, ウは40℃ 40gの水,エは 60℃, 50gの水にとける質 量を考える。 (2) (3)

回答募集中 回答数: 0
数学 高校生

微分についての質問です。一枚目の写真で青マーカーを引いたところには、「三次不等式はグラフを利用して求める。極値を求める必要はない。」とありますが、例題212.213では極値を出して解いている気がします。 ・なぜ例題212.213では極値を出して、例題216では極値を出して... 続きを読む

2 406 第6章 微分法改 練習 [216] **** 7956 く 50 785 2210 196 例題 216 三角不等式 **** cos 30 + cos 20+ cos >0 を満たす0の値の範囲を求めよ.ただし, 0≦02 考え方 解答 とする. 例題 212(p.402) と同様にして3次関数のグラフとx軸の位置関係を考える. まず cosa=t とおき,tの3次不等式を作る cost とおくと,002πより、 また, cos30=4cos0-3cos0=4t-3t cos 20=2 cos 0-1=2t2-1 4t3+2t-2t-1>0 したがって, 与式は, (4t-3t) + (2-1) +t>0 2t2(2t+1)-(2t+1)>0 (2t+1)(2-1)>0 ...... ② (2t+1)(2-1)= 0 とすると, tの値の範囲に注意 与式の左辺を cosで 統一する。そのとき 倍角,2倍角の公式を 利用する. ((p.269 参照) 組み合わせを考えて, 因数分解する。 [解] Commen ここ こで, 2 線が一致 200 とし, 線をも この √2 1 1 t=- 0 2' √2 2 y=4t+2t-2t-1 のグラフは, 右の図のようになる. したがって、②の解は、 ①より RD 3次不等式はグラフを 利用して考える. 極値 を求める必要はない。 30 1 <t≦1 √2 2√2 よって,t=cos 0,0≦02 より 0≤0< 単位円を利用して8の 範囲を求める. て π 第3,4象限の解と第2, 2 3 147 4 1 √2- 1象限の解は,それぞ 例 0 5 << 27 << れx軸に関して対称 10 1 x 43 7 3π 1 4π 注〉和積の公式を用いて次のように解くこともできる. (p.274 参照) ( cos30 + cos 0) + cos20>0 2 cos 20 cos 0+ cos 20>0 cos 20 (2 cos 0+1)>0 (2cos'0-1)(2cos0+1)>0 ここで, cosa=t とおくと, cosA+ cosB=2cos- A+B A-B COS 2 2 (2t2-1)(2t+1)>0 あとは、例題216と同様にして解けばよい. tan 20 + tan00 を満たす 0 の値の範囲を求めよ。ただし,0≦02 とする. 次

回答募集中 回答数: 0
数学 高校生

(2)を解くとき、何から始めれば良いか分からなくて解けません。どんな思考回路で解けば良いですか?

CER FACITY 134 漸化式の応用 平面上にn本の直線があって,どの2本も平行でなく,どの3 本も1点で変わらないとき、これらの直線によって平面がan個 の部分に分けられるとする. (1) α1, a2, as を求めよ. (2) n本の直線が引いてあり, あらたに (n+1) 本目の直線を引 いたとき、もとのn本の直線と何か所で交わるか. (3) (2)を利用して, an+1 を an で表せ (4) an を求めよ. 精講 まず設問の意味を正しくとらえないといけません. nが含まれて いるとわかりにくいので,nに具体的な数字を代入してイメージを つかむことが大切で,これが(1)です. (3)が最大のテーマです。 「an+をαで表せ」という要求のときに, 41, a2 α などから様子を探るのも1つの手ですが,それは137以降 (数学的帰納法)に まかせることにします。ここでは,一般に考えるときにはどのように考えるか を学習します。 nant の違いは直線の本数が1本増えることです. 線と サト 大点によって,(n+1)本目の直線は,2つ ある直 の半直線と (n-1) 個の線分に分割されている (下図).. ② ③ ① 1本目 (n+1) (n+1)本目の直線 A 2本目3本目 この(n+1) 個の半直線と線分の1つによって、いままで1つであ った平面が2つに分割される. よって, (n+1) 本目の直線によって, 平面の部分は (n+1) 個増える ことになる. 本目 (4)n≧2のとき, an+1=an+n+1 (n≧1) f(n)の形やで 階差数列 (123 n-1 an=a1+(k+1)=2+2+3+..+n) k=1 =(1+2+…+n)+1-1/2n(n+1)+1/12 (2) これは, n=1のときも含む. 吟味を忘れずに ポイント 直線の数が増えれば分割される平面が増えることは想像がつきますが,問題 はいくつ増えるかで,これを考えるために(2)があります. 漸化式を作るとき, n番目の状態を既知として, (n+1) 番目の状態を考え、その変化を追う 解答 (1) (a₁) (a2) (a3) 第7章 ② ④ 27 ⑤ ③ 演習問題 134 ④ 右図のように円 01,02, 直線 ・は互いに接し、かつ点Cで交わる半 に内接している。このとき、次の問いに答えよ. 12 図より, a1=2 図より, a2=4 図より α3=7 (2) すべての直線は,どの2本も平行でなく,どの3本も1点で交わら ないので, (n+1) 本目の直線は,それ以前に引いてあるn本の直線の すべてと1回ずつ交わっている。 よって、nが所で交わる (1)円の半径が5CA の長さが12で あるとき,円の半径 12 を求めよ. (2)番目の円の半径を1とすると (2) きっと+1の関係式を求めよ. 02 -11 A2 Al

回答募集中 回答数: 0
数学 高校生

(2)で黄色い付箋が貼ってあるところの「ここで〜となり」の範囲を確認している部分がなんそうなっているのかわかりません。後右ページ上から2行目から3行目の計算の仕方がわかりません

基礎問 110 面積(M) 放物線y=ax2-12a+2 (0<a</ ......① を考える. y=uv y 14042 ay2+y-2(2α+1)=0 ..(y-2) (ay+2a+1)= 0 .. y=2, −2-17= 201 a a -20-=-2-4 (1)放物線 ①がαの値にかかわらず通る定点を求めよ. (2) 放物線①と円 2+y2 =16・・・ ② の交点のy座標を求めよ. (3)a=1/12 のとき,放物線 ①と円 ②で囲まれる部分のうち、放物 精講 線の上側にある部分の面積Sを求めよ. (1)定数αを含んだ方程式の表す曲線が, aの値にかかわらず通る 定点を求めるときは、式をαについて整理して,aについての恒 等式と考えます (37) (2) 2つの曲線の交点ですから連立方程式の解を求めますが,yを消去すると の4次方程式になるので, 座標が必要でも,まず』を消去してyの2次 方程式にして解きます。 (3)面積を求めるとき,境界線に円弧が含まれていると, 扇形の面積を求める ことになるので, 中心角を求めなければなりません. だから, 中心〇と交点 を結んだ線を引く必要があります.もちろん、 境界線に放物線が含まれるの で,定積分も必要になります。 ここで, 2</1/12より-2-1/2-4となり,円+g=16 上の点 _1は不適よって, y=2 y=-2- (3)a=1/12 のとき,①は y=1/1 (1)(2), ①,②の交点は (A(2√3,2), B(-2√3, 2) AOB=120° だから 2√3 S=2.5" {2-(1-1)) は-4≦y≦4 をみたす y 4 2 B4.... A d.x +(x-4³. 120-4-4-sin 2) +(7.42.120 360 12/3 16 3 --+6]+6x-4√3 =24√3+12√3+1-4√3 6 16 =4√3+10% x -1 解答 (1) y=ar2-12a+2 より ポイント a(x²-12)-(y-2)=0 <aについて整理 これが任意のαについて成りたつので 2-12=0 y-2=0 x=±2√3,y=2 演習問題 110 よって, ① がαの値にかかわらず通る定点は (±2√3, 2) y=ax²-12a+2.....① (2) |r2+y2=16 ......② ②より, z=16-y だから, ①に代入して 境界に円弧を含む図形の面積は,中心と結んで扇形の 面積を考えるので、中心角が必要 2次関数 f(x)=x'+ax+b が条件f(1)=1, f'(1)=0 をみた すとする.また,方程式-2x+y-2y=0 が表す円をCとする. (1) α, bの値を求めよ. (2)y=f(x)のグラフと曲線Cで囲まれる部分の面積のうち,放 物線の下側にある部分の面積Sを求めよ. JmHe

回答募集中 回答数: 0