学年

質問の種類

数学 高校生

(3)の解説で 「ここで、~」以降のところがわからないので教えて欲しいです!!

第3章 47 軌跡(V) mを実数とする.ry平面上の2直線 76 基礎問 基礎問 とは、入試 問題を言い この「基礎 まとめてあり について,次の問いに答えよ. 98 出題される げ 教科書 ■ 。 特に、 5/8 ■アできる mx-y=0.① +m x+my-2m-2=0 ......②2 (1) ①,②はmの値にかかわらず,それぞれ定点 A,Bを通る。 A,Bの座標を求めよ. ○ (2) ① ②は直交することを示せ. (3) ①②の交点の軌跡を求めよ. 一つのテー ーマは原 やすくな 精講 (1) 「mの値にかかわらず」 とあるので,「mについて整理」して mについての恒等式と考えます. (37) (2) ②が 「y」 の形にできません. (36) ことはないので(注), (0, 2)は含まれない. よって、 求める軌跡は O-8 円 (x-1)+(y-122 から, 点 (02)を除いたもの. 注 一般に,y=mx+n 型直線は, y 軸と平行な直線は表せません. それは,yの頭に文字がないので,m,nにどんな数値を代入しても 77 必ず残って,r=kの形にできないからです。 逆に,xの頭には文 字がついているので,m=0 を代入すれば,y=nという形にでき, 軸に平行な直線を表すことができます。 45 の要領で①,②の交点を求めてみると 参考 2 (1+m) 2m(1+m) x= 1+m² 1+m²,y= となり,まともにmを消去しようとすると容易ではなく, 除外点を見つける こともタイヘンです. もしも誘導がなければ次のような解答ができます. こ aisons れが普通の解答です. x=0 のとき,①よりm=¥で割りたいの (3) ①②の交点の座標を求めて, 45 のマネをするとかなり大変です したがって,(1),(2)を利用することを考えます。このとき、4 IIIを忘れてはいけません. IC で≠0. r=0 ②に代入して y² 2y -2=0 で場合分け I IC 解 答 :.x'+y2-2y-2x=0 .. (x-1)+(y-1)²=2 YA 2 (1)の値にかかわらずmx-y=0が成りたつとき, x=y=0 A(0, 0) ②より (y-2)m+(x-2)=0 だからy-2=0、x=0mについて整理 .. B(2, 2) 次に, x=0 のとき,①より,y=0 0 これを②に代入すると,m=-1 となり実数が存在するので 点 (0, 0) は適する. 以上のことより, ① ②の交点の軌跡は円 (x-1)+(y-1)²=2 から点 (0, 2) を除いたもの. (2) m・1+(-1)・m=0 だから, aia2+bib2=0 36 ポイント ①,②は直交する. より, ∠APB=90° (3)(1),(2)より ① ② の交点をPとすると ① 1 ② ある円周上にある. その際, 除外点に注意する 定点を通る2直線が直交しているとき, その交点は, y 2 よって、円周角と中心角の関係よりPは2点A, B よって, (x-1)^2+(y-1)²=2 また,AB=2√2 より 半径は2 Bを直径の両端とする円周上にあるこの円の中 心は ABの中点で (11) (1泊) 演習問題 47 0 A 2x ここで,①はy軸と一致することはなく、 ②は直線 y=2 と一致する tを実数とする. ry 平面上の2直線 l : tx-y=t, m:x+ty=2t+1 について, 次の問いに答えよ. (1) tの値にかかわらず, 1, mはそれぞれ, 定点 A, B を通る. A,Bの座標を求めよ. (2), mの交点Pの軌跡を求めよ.

回答募集中 回答数: 0
地学 高校生

2番の問題わかりやすく説明していただきたいです

2つのピーク 重要問題 1 地球の大きさ 地球の大きさに関する次の文を読み, 後の問いに答えよ。 紀元前230年ごろ,エラトステネスが初めて地球の大 きさを計算した。計算には,夏至の日の太陽の南中高度 がエジプトのシエネでは90°シエネからほぼ真北に 100kmのところにあるアレクサンドリアでは 82.8°であ ることを利用し,地球は球形であると仮定した。 (1) アレクサンドリアとシエネの緯度差を求めよ。 アレクサンドリア 天頂 太陽光 182.8° 90° (2)文中の数値を用いて, 地球の半径を有効数字2桁で 求めよ。 なお,円周率は 3.14 とする。 シエネ ●センサー 同じ天体の南中高度の 差は緯度の差に等しい。 解説 (1)2地点の緯度差は,下の図のβである。太陽光線 は平行なので, β = α となる。 よって, センサー 地球の大きさは,弧の 長さが中心角に比例する ことを利用して求める。 センサー α =90°- 82.8°=7.2° (2) シエネとアレクサンドリアとの 緯度差は7.2°であり,またその 間の距離は900km である。 中心 角と円弧の長さとの比例関係か 地球の半径をR とすると, 900km: 2×3.14×R =7.2° : 360° [有効数字の計算] 途中の計算では問題文 の指示より1桁多く計算 し、最後に四捨五入して 指示された桁にすればよ い。 したがって,R= 900km × 360° 2×3.14×7.2° ≒7166km 有効数字2桁のため, 7.2 × 10km と答えればよい。 内 答 (1) 7.2° (2) 7.2×10°km るほど! 地球の大きさの計算 a

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この問題がわかりません! 教えてください!

【問題1】 自動車を加速させる力は次のどれか。 ①~③の該当するものを一つ選べ。 ①エンジンの回転力 ② タイヤが路面を後ろに押す力 ③路面からの摩擦力 【問題2】 バネ定数 350N/m のバネの一端に, 質量が 10.0kgの小球を取り付けて傾斜角 30.0℃のな めらかな斜面上に置き、図のようにバネの他端を固定する。 このときの静止している小球には たらく力を考える。 重力加速度の大きさを 9.80m/s2, 有効数字 を3桁とする。 ※ 単位[N] (ニュートン): 力の単位で, [kg・m/s2] と表せる 20 (1) バネの伸びの大きさ x[cm] を求めよ。 (2) 小球にはたらく垂直抗力の大きさ N[N] を求めよ。 130.0° 【問題3】 質量m=5.00kg, 半径R=20.0cm, 長さ 180.0cmの円柱が, なめらかな2つの面 A, B に はさまれて静止している。面Aは水平面となす角度が0A = 90.0°, 面BはOp=30.0℃である。重 力加速度の大きさを g=9.80m/s2として,次の問に答えよ。 (1) 円柱が面 A から受ける垂直抗力の大きさ NA[N]を 求めよ。 面A 円柱 m 面B R (2) 円柱が面 Bから受ける垂直抗力の大きさ NB[N] を 求めよ。 OA OB 【問題4】 容器に水を入れ, その中に質量の無視できる伸び縮みのしないひもを付けて天井から吊り 下げた金属球を入れた。 水の密度をp=1.00g/cm3, 金属球の半径をr=10.0cm, 質量を m=5.00kg, 重力加速度の大きさを 99.80m/s2として,次の問に答えよ。 (円周率の値の有効数字を考えること。) (1) 金属球が押しのけた水にはたらく重力の大きさ W[N] を求めよ。 (2) 金属球が受ける浮力の大きさ F[N] を求めよ。 (3) ひもの張力の大きさ 7[N] を求めよ。 m 金属球 P 水

回答募集中 回答数: 0