学年

質問の種類

数学 中学生

8(3)と11と13(1)(2)のやり方を教えてほしいです🙇‍♀️

0 35 ① 36 ② 37 (3) 38 ④ 39 5 40 641 ⑦ 428 439 44 〔式の計算 (1・2年)〕 7 次の計算をしなさい。 (1) 11 (3a-1)/(a+1) 4 2x-1x+1 (2) 3 +. [ たちばな〕 (13) ☆2の値を求めなさい。 9y= -(PS・数学 4 〔栄徳〕 1~ 〔名工〕 太字 数字 の意 では 2-5zをπについて解きなさい。 3 10 次の問いに答えなさい。 (1)1本円の鉛筆5本と1冊4円のノート3冊の 合計の金額は250円よりも高い。 これらの数量の関 係を不等式で表しなさい。 [修文学院〕 つい 23- [啓明学館〕 4 【産だ の個数は 6 (4) 2 かで、素数は (3)-1+2x+4 2x-3yx3-2(x-y) 3x+y_2x-y [瑞穂] 9 [桜花] (5) 〔至学館〕 5 3 G (6)(3ab)3ab2xa5 〔椙山〕 (7)(20)÷1/1/30°×1-(°6) 2} [名古屋] ●位の数をそれぞ (2) ある整数から3を引いて5倍すると, 35より大 きく42より小さくなるという。 この整数は [アイ] である。 〔誠信〕 11 T君は家から学校までの道のりを、行きは平均時 速10kmで走り, 帰りは平均時速4kmで歩いて帰っ た。 行きと帰りを合わせた平均時速を求めなさい。 た だし, 行きと帰りの道のりは同じとする。 〔東邦] 12468, 10, 12のような連続する5つの偶数 の和が10の倍数になることを,次のように説明した。 文章中の6にあてはまる数を,下のア~ エからそれぞれ選びなさい。 の ごと に 「い 上 (8) (3xy)-9x (-2x) 3 〔高蔵〕 なお、3か所のbには,同じ数があてはまる。 [人環大附岡崎〕 [へ] い。ただし、 (9) 3(3x+4y)-2(2x-6y). 〔名工〕 (10) 5(x-2y)- (3x-y) [名国際] コである。 [社 ■値はいくつお 2x+5y x-y (11) 3 4 [名城大附〕 /(S) 連続する5つの偶数のうち、いちばん小さい偶数 を2n とすると,いちばん大きい偶数は2n+α と表される。 入 (12) 2x+5y+ 3 -3x+y 4 〔栄徳〕 このとき, 連続する5つの偶数の和は10(n+b) と表される。 〔名女 (13) 全部で 〔愛産大三 . 4つ り、2+30 (15) 9a2bx2a÷6b (16) 2(4a-5b)-(3b-a) 3 2x+5x-5 6 主人 --2 [聖霊] (14)3(5x-4y)-2(7x-y) 〔〕 〔誠信] n+b は整数だから, 10 (n+6)は10の倍数 である。 したがって, 連続する5つの偶数の和は、10の 倍数である。 は分散である。 動 [修文学院〕 a ア. 2. 4 ウ. 6 エ.8 までのイベ (17) 2x-y x-4y b ア. 2. 4 ウ.6 エ 8 の差を記録 4 [黎明〕 5 (春日 (18) 3x-1 x-5 42 [日福大付〕 土曜日 日曜 13 1から4までの数字が書かれた面積3cm 2 の三角 形があり、 図のように並べていく。 あとの問いに答え さい 95 ② ) 〔高蔵〕 (19) (-2a)³× (-65)÷2(ab)² 〔人環大附岡崎〕 +12 コである。 (20) 24a626ab1/12a2 a² 0-30 (21) 3a-ba-2b 43 8 次の問いに答えなさい。 [光ヶ丘〕 [愛産大三河] 本 A 12/3 13/34 1番目 2番目 3番目 4番目 L 12/34/12/ かった日 人数の OFF (1) x+3y 2 xy 15+ の値を求めなさい。 X Y 〔椙山〕 (2) x=2024のとき, X I + の値を求めなさい。 88 184 253 [桜花] (3) 記号☆をa b =α+62と定めるとき, 5番目 6番目 -35- (1) 2024番目の図で一番右の三角形に書かれた数字と して正しいものを,次のア~エから1つ選びなさい。 ア. 1.2 ウ.3 エ. 4 (2) 並べた図形の面積が99cmとなるとき 1の数 字が書かれた三角形を何枚用いているか,正しいも のを,次のア~エから1つ選びなさい。 te T 2 a

未解決 回答数: 1
数学 高校生

(2)のオレンジで囲われたところが分かりません。どなたか解説お願いしたいです

(注)この科目には、 選択問題があります。(3ページ参照。) 第1問 (必答問題) (配点 30) 〔1〕 αは負の数であり a を満たす。 (1) a²+P であり Q2. であるから + である。 Blod as b qila am ol lasbi of rfil ei. エ 第1問 数と式、集合と命 2次関数 (2) (1) 出題のねらい 対称式の計算の処理ができるか。 ・平方根の計算が正確にできるか、また平方根の側の 範囲を調べられるか。 解説 <0> (1) a²+(0)+20 ここで。 =(√2)+2 ----- (0+1)(0) (+1)+20 4-4-26 あるから、 a+1--16 よって, bona mile ebuit 0 (2) an-a2<a'n-1 を満たす最小の整数nはn= キクである。 (数学Ⅰ・数 √2+√6-2+√3 an-a³<a'n-1 ala-1)<a-1 ここで、 より -2+√3>1 アドバイス 対称式 a'<1 すなわち、 9110 また。 a'>0 よって、より "> であり。 ...... (2+√3)-7+1/3-7+√18 であるから。 >7+√48 ここで。 より。 6</48<7 13<7+√18<14 よって、求めるは、 14 13 7+ 48 14 数を入れ換えても。 全く同じ式になる 式という。 例えば などは を入れ換えても同じ式になるから、、 式である。 + b. ha. の基本対称式 ここで重要なのは、 すべての対称式は基本対称式を用いて ということである。 本間において.. 1の式であり、小( 1の基本対称式である。 よって、 at12 を用いて表され、1/3のが at. 22 [の他を求められる。 式の特徴を見抜く力を養い。 典型的 に しよう。 (2) 出題のねらい 不等式で表された実故の条件について 条件十分条件の関係を考えられるか 解説 par+b..3|<2

解決済み 回答数: 1