学年

質問の種類

数学 高校生

数IIの三角関数の合成の利用の問題です。 (2)なのですが、解説を見ても理解ができなかったため、解説をお願いします。

(1) sin-cos0 = 1 002 のとき,次の方程式、不等式を解け。 例題 163 三角関数の方程式・不等式 〔6〕・・・ 合成の利用 **44 (2) 2sin(+) 6 +2cos√3 思考プロセス Action>> a sin0+ bcos, r sin(0+α) 既知の問題に帰着 サインとコサインを含む式 (1) sin-cos 0=1=> 合成 サインのみの式 sin (0- = 1 (2) まず 0 のみの式にしてみる。 を含む式… 6 (1) sine-cos =√√2 sin(0) であるから,与式は y 例題 O 162 sin(0) = 1 √2 例題 148 Π 6- =α とおくと,0≦02 より AUGLS7 ≤a< π 4 4 4 URSS π 3 この範囲で sinα = を解くと a = 2 TO π 3 6- π より 4 4 例題 162 (2) 2 = Π 4 " 2sin(+)+2cos= = √3 sin+3cos cose +2 cos COSO) + 2070200 0 = πT " 5809 π 44 π 2 3 sino + 2 2 12 よって, 与式は = = 2/3 sin (0+) JT 2√3 sin (0+)2√3 b5 sin (0+1) ≥ 1/1 2007 例題 148 0+ 8 + 1 = Π π =α とおくと,0≦02 より 3 3 1/12 Ra この範囲でsina 1/2 を解くと M 5 π, 3 6 1 sa≤or, 1x ≤a< 3 13 6 元 T Π T 5 13 TC 7 π, 3 < 6 6 TC 3 31 したがって TC 0≤0≤ 11 29 1630≦2のとき、次の方程式、不等式を解け。 (1) 3 sine-cos = -1 π P 023080 Action a Wy=sind y=2sin サイン& → 050 川 y=s X Π 4 よっ L 三角関数の合成 УА P 3 12 C 2.3 π У 3 ¦ √3 x F 13 1x

回答募集中 回答数: 0
英語 高校生

下線部(A)の内容を60字以内で説明しなさいと言う設問なのですが、大まかな意味はこれで合ってるでしょうか?💦

解答欄にマークしなさい。 問 2, 間 3, 4, 問5の解答は, 解答用紙 守谷市祗1枚目 (マークシー 2枚目 (記述式) に記入しなさい。 Technology is rapidly and fundamentally changing the way most people do their jobs, disrupting (1) the nature of work and increasing the demand for new kinds of digital skills. The impact can be felt in all kinds of jobs. Gone are the days of copywriters (2) simply writing copy, for instance. Now they also need to be familiar with search engines and social media to know what will make their work more visible online. Architects need to be able to create digital concepts as their clients now often expect to see more than a 2D drawing. Accountants have to keep up with rapid digital advances disrupting their industry such as the growth of online filing. (3) Byron Nicolaides, CEO of PeopleCert, a professional skills assessment and certification business, says: "The digital skill gap describes the effect that has resulted from a shift. towards digitalisation, with the emergence of new professions, alongside the displacement of other roles, that now require continued digital training." Demand for people with high-level digital skills is greater than the supply of suitably qualified employees, and the gap is growing. The World Economic Forum estimates that by 2022 emerging technologies will generate 133 million new jobs in place of the 75 million that will be displaced. "If the demand for digital expertise is not able to be met by the supply, the resulting deficit in a skilled workplace will not only affect the ability of businesses to shape their own future, but will hinder the economic growth and generate a new reality of [digital] illiteracy (E4)," argues Nicolaides. The UK is the fifth most digitally advanced nation in Europe (Finland comes top) according to data from the European Union. It is already home to a large number of big tech businesses and the UK has more tech "unicorns" (start-up businesses valued at $1 billion or more) than any other European country. According to Tech Nation, a UK network focused on accelerating the growth of digital businesses across the country, in 2018 the UK continued to attract tech talent, employing 5 per cent of all high-growth tech workers globally. In Europe this places the UK behind Germany but ahead of Sweden, France, Denmark and the Netherlands. Despite (A) this encouraging news, the UK is still facing a significant digital skills shortage. A report from the Open University last year highlights the extent of the problem and its impact on UK companies, with nine in 10 organisations admitting to having a shortage of digital skills. Jules Pipe, London's deputy mayor (5) for planning, regeneration and skills, says the capital needs workers with advanced digital skills. "More than half of the capital's start-ups say a lack of highly skilled workers is their main challenge, while emerging industries -

回答募集中 回答数: 0
数学 高校生

29番の(1)で必要十分条件を求める問題で、どちらが必要条件でどちらが十分条件か分からなくなってしまいました。考え方を教えて頂きたいです。

28 よって ここで ゆえに −(n=k+1}{n+k+1)+(n−k)(n+k) n→∞0 =-2k²+(2n²+2n+1) f(n)=-4 f(x)=x(2k² +2n² +2n+1) k²=0+22k², 1=2n+1 TA³5 k=1 −42 k²+(2n²+2n+1) (2n+1) k=1 − n(n+1)(2n+1)+(2n²+2n+1)(2n+1) lim 72-00 n³ (2) f(n) -1/(1+1/2)(2+1/2)+(2+1/2)(2+1)} =--²--1-2+2-2= 8 3 3 別解n≦x≦k, k≦x≦n と k<x<kに分けて,直線 y軸に平行な直線につ x=i (-n≦i≦n) 上にある格子点の数を求める。 さて格子点を数える。 = -n≦i≦k のとき, 格子点の数は k=-n 1+3++{2(n−k+1)−1}=(n−k+1)² = (+_____________ k<i<kのとき, 直線 x = i の本数は ←-k+1≦isk-1 各直線上の格子点の数は よって k-1-(−k+1)+1=2k-1 = I=gb S=b 2(n-k+1)-1=2n-2k+1 Nk=2(n-k+1)+(2n-2k+1)(2k-1) =-2k²+(2n²+2n+1) 総合を複素数とする。 自然数nに対し、2” の実部と虚部をそれぞれxとyとして、2つの数列 29 {Xn},{yn}を考える。 つまり, z=xn+iy" (iは虚数単位) を満たしている。 (1) 複素数zが正の実数と実数0を用いて z=r (cos0+isine) の形で与えられたとき、 数列{x},{ym} がともに0に収束するための必要十分条件を求めよ。 1+√3 10 = n(n+1)(2n+1) のとき、無限級数Σx とΣy はともに収束し, それぞれの和は n=1 71=1 x=2y=イロである。 (1) z=r (cos0+isin0) [r>0] のとき HINT (1) x²+y² = (r")2 となることに注目し, まず必要条件を求める。 (2) z を等比数列の和の公式を利用した式で表してみる。 ORAN z"=r" (cosnotisinn()=r"cosn0 +ir” sinne Xn=r" cosnd, yn=r"sinno よって ゆえに x2+yn²=(r")' (cos2nd+sin'nb)=(x2)" limxn=limyn=0のとき lim(x²+ym²)=0 〔類 慶応大] 本冊 例題 13,102 ←ド・モアブルの定理。 ←=xn+iy 0sr²<1 よって に0<r<1のとき 1-400 0<r<1より, lim|rl"=0であるから ゆえに 0≦|x|=||"|cos nolsrp. よって 0≦ly|=|||sinner| また 以上から、求める必要十分条件は +③iのとき 10 lim|x|=lim|y|= 0 71-00 ゆえに 1110 Z ここで1-2 lim xnn-000 ZR= ここで k=1 z(1-2)= 1-² よって 1- 1+√3 i 10 1+√3 i 10 k=1 84 3+5√3 i 42 (1+√3i)(9+√3 i) (9-√3i)(9+√3 i) 6+10√3i_3+5√3i 2x= k=1 1-2 (1-(xn+iyn)) 1+√3 i 9-√3i 11-0 0721 0<r<1 n=1] -(1-Xn-iyn) 2R= = 1/2 (3(1-xn) +5√3 yn+(5√/3 (1–xn)—3yn}i) z*= (xn+iyn)= xx+iZyn k=1 3(1-x₂)+5√√3 yn 42 ΣXn² n=1 42 5√3 (1-xn)-3yn 42 0</1/3 <1であるから, (1) の結果より limxn=limyn = 0 „=lim 11-00 2 k=1 2 = = = = ( 1²/2 + √²³_i) = = = (cos / 1 + isin) Σyn=lim- 11-0 ←Sa<1のとき a²19 a=1のとき、 α>1のとき、18 42 ←xel Saxolxel から、 xel 0のとき 初項z. 公比zの等比 数列の初項から第 環 までの和 12-00 3 (1-x)+5√3ym_3_71 42 5√3 (1-xn)-3yn_15√/3 42 -419 ←分母の実数化。 42 14 ← 22 のもう1つの表現。 ←実部、虚部をそれぞれ 比較。 (12) 結果を利用 総合 N=1 £ =lim ży

回答募集中 回答数: 0