学年

質問の種類

数学 高校生

汚くて申し訳ないです💦 inf(写真下部)について質問です。 文章の理解はできたのですが、★部分をもう少し具体例で理解したいと思いました。例えばどんなものがあるのか教えていただけませんか?

トを問 4で外接する2円 0, 0' がある。 Aにおける共通接線上 点A の点Bを通る1本の直線が円0と2点C, Dで交わり, B 00000 明せよ。 を通る他の直線が円 0′ と 2点E, F で交わるとする。こ のとき, 4点C, D, E, F は1つの円周上にあることを証 OA OXF p.394,395 基本事項 3. 基本 82 403 CHART & SOLUTION 1つの円周上にあることの証明 方の定理の逆 4点が1 から、「べきの定理の逆」 を利用する方針で考える。 1つの円周上にあることは, 「円周角の定理の逆」, 「内角と対角の和が180°」, 「方べ の定理の逆」のいずれかを利用すれば示せるが,この問題では角度についての情報がな 4点C,D,E,F を通る円をかいてみると, 示すべきことが BC BD BE BF であること が見えてくる。 円0において,方べきの定理から B E ← 接線 BA, 割線 BD ←接線BA, 割線 BF BC・BD=BA2 円 0′において, 方べきの定理から 0 よって BE・BF=BA2 BC・BD=BE・BF ゆえに、方べきの定理の逆から、共 3 10 円と直線、2つの円 4点C,D,E,Fは1つの円周上にある。 に 内 inf 方べきの定理 PA・PB=PC・PD において PA・PB の値をべきという。ここで,円の半径をr とすると, [1] A 右図の [1] のとき PA・PB=PC・PD=(CO+OP)・(QD-QP) =(z+OP)(r-OP)=-QP2 [2] C D OP B B 右図の [2] のときは,同様の計算で PA・PB=OP2-r2 したがって, PA・PBの値は|OP2-2に等しい。OP2は, 点Pが固定されていれば一定の値である。すなわち 定点Pを通る直線が0と2点A,Bで交わるとき, PA・PBの値は常に一定である。 PRACTICE 90 金 円に、円外の点Pから接線 PA, PB を引き, 線分AB と PO の交点を通る円Oの弦 CD を引く。 このとき, 4点P,C, ODは1つの円周上にあることを証明せよ。 ただし, C,Dは P 足理 26 MI D B

回答募集中 回答数: 0
数学 中学生

分かるところだけでいいので教えてください🙇‍♀️ 明日までなんです💦 お願いします

注意 1 答えに、 が含まれるときは ただし、 をつけたままで答えなさい。 "の中はできるだけ小さい自然数にしなさい。 用いなさい。 1 次の (2) の問いに答えなさい。 (1) 次の計算をしなさい。 ①5 - 8 (一部) (4) ③ 4x-9y+2(2x+5y) N But my ④ 2,14÷√2 76 (2) 五角柱の辺の本数を求めなさい。 28217 2 次の(1)~(5)の問いに答えなさい。 (1) 右の図のように、円周上に2点A Bがある。 点 Bを通る円Oの接線上にあり, OP=APとなる点Pを 求めるときに必要な作図を、次のア~カの中から2つ選 び記号で答えなさい。 ア 線分OAの垂直二等分線 ウ 線分OBの垂直二等分線 オ 線分ABの垂直二等分線 イ 点を通る直線ABの垂線 エ点Aを通る直線OAの重線 カ 点Bを通る直線OBの重線 B (2) 747の大小を不等号を使って表しなさい。 40 (3) (46)"を展開しなさい。 (45)(45) a²-4ab-4ab-1662 a² Ɛab rab" (4) 関数y=3x-5について xの増加量が7のときのyの増加量を求めなさい。 (5) あるバスは, A地点からB地点を経由してC地点まで走った。 A地点からB地点までの道 のりを毎時αkmの速さで走ったところ2時間かかり, B地点からC地点までの道のりを毎時 bkmの速さで走ったところ3時間かかった。 このときバスが走った道のりは何kmか. 4. b を使った最も簡単な式で表しなさい。 f 146 6 km 20. 3次の(1)(2)の問いに答えなさい。 (1) 右のデータは、あるクラスにおけるA班の生徒 6人と、 B班の生徒7人の漢字テストの得点を 左から得点が低い順に整理したものである。 データ Aの生徒の漢字テストの得点 18 20 26 27 27 30 ( 単位点) 12 ① A班における第四分位数を求めなさい。 B班の生徒の漢字テストの得点 19 21 22 26 27 29 (単位点) 29 ② 分布の範囲が大きいのはA班 B班のどちらであるといえるか。 A. Bの記号で答え、 その 分布の範囲も書きなさい。 (2) 1から6までの目がある大小2つのさいころを同時に1回投げる。 大きいさいころの出た目 の数をα 小さいさいころの出た目の数をとする。 a + b = 8 となる確率を求めなさい。 ただし、それぞれのさいころについて どの目が出ることも同様に確からしいものとする。 (2346 2662 図1のように、 4. bの値による条件が書かれたマスがあり スに書かれた条件を満たしているとき、そのマスに色を塗る。 例えば, 2.6=4のとき、 図2のようになる。 さいころを投げたあと、両方のマスに色を塗る確率をP. どちら のマスにも色を塗らない確率をQとするとき。 PxQの値について どのようなことがいえるか。 次のア~ウの中から正しいものを1つ 選び 解答用紙の )の中に記号で答えなさい。 1 3.5 5.3 が2の 倍数 bが素数 が2の 倍数 みが素数 また、P,Qをそれぞれ分数で示し、 選んだものが正しい理由 を説明しなさい。 PxQt 1 PXQ=16 ウPXQ=36 2-

未解決 回答数: 1
数学 高校生

同一直線上にないというところから理解ができません。お願いします。

る. このことから,右のようにに、 長さより大きい△ 三角形の2つの辺の和は、残りの辺の長さより大きい という性質を利用することができないか考える m つまり,BD=PD, CE=PE となる △PDE が存在すること を示すことができれば, DE <BD+CE を示せそうである. 右の図のように、線分AM 上で, BM=CM=PM とな るように点Pをとる. 人式の証明 海形の or △BDM と △PDM において, ・成立条件2組の辺とその間の角が, それぞれ等しいので △BDM=△PDM a LA C a<b+c 9 /P E 点P と PD, PE の補助 線を引く. # BMCIA (0) Focus よって, BD=PD ...... ...① ∠DBM = ∠DPM ...... △CEM と △PEM において同様に考えて, △CEM=△PEM ML よって, CE=PE …③ ∠ECM=∠EPM …④ ②④より A A DE <BD+CE 三角形 成立条件:同一直線上 じゃない ∠DPM + ∠EPM= ∠DBM+ ∠ECM +28) = ∠ABC+ ∠ACB する。 3208AA =180°-∠BAC <180° [ + ] よって, 3点D, P, Eは同一直線上にない. したがって, △PDE は存在し,三角形の成立条 件より, DE <PD+PE ①③ 5より、 DE <BD+CE 3点が同一直線上にある とき, DE=BD+CE と なるので,そうならない ことを示しておく. 28 28 A 08 411 STAJ 不等式の満たす意味と同じ図形の性質がないか考える 内 214 (1) A て,辺BCの中点をMとする. -BA Farel 朱

回答募集中 回答数: 0