学年

質問の種類

数学 高校生

数II 微分 この問題の答えが私が解いた答えと合わないのですが、なぜ答えのようにならなくてはいけないのかわかりません。赤線引いたところが間違えたところです。 教えていただきたいです🙇‍♀️

356 重要 例題 224 区間に文字を含む3次関数の最大・最小 f(x)=x-6x2+ 9x とする。 区間 a≦x≦a+1 における f(x) の最大値 求めよ。 指針 この例題は, 区間の幅が1 (一定) で, 区間が動くタイプである。 00000 M() を 基本200 まず, y=f(x) のグラフをかく。次に, 区間 a≦x≦at1をx軸上で左側から移動し ながら, f(x) の最大値を考える。 場合分けをするときは,次のことに注意する。 A 区間で単調増加なら, 区間の右端で最大。 区間で単調減少なら, 区間の左端で最大。 両極値をとるxの値がともに区間に含まれることはないから © 区間内に極大となるxの値があるとき,極大となるxで最大。 >0 (8) 区間内に極小となるxの値があるとき, 区間の両端のうちf(x)の値が大きい方 で最大→区間の両端で値が等しくなる場合が境目となる。 すなわち f(x)=f(a+1) となるとαの大小により場合分け。 A 最大 ® (1)M 最大 最大 [2] a<1ma+ 0≦a <1のと f(x)はx=1 M(a)=1 次に, 2 <α <3 f(a)=f(a+1) a3-6a2+▪ 3a² ゆえに よって a= 2 <α <3と5< [3] 1≦a< f(x)はx= M(a)= 解答 最大 または 9+√33 [4] 6 f(x)はx= M(a) f'(x)=3x²-12x+9 =3(x-1)(x-3) f'(x) = 0 とすると x=1,3 f(x) の増減表は次のようになる。 x 1 f'(x) + 0 - 3 f(x) 解答の場合分けの位置のイ y=f(x)メージ 以上から 4--- y=f(x)| 4 NN [2] [3] [4] 0 + 極大| 極小 01 3 a01 a 3a+1 x 4 0 検討 よって, y=f(x)のグラフは右上の図のようになる。 ゆえに、f(x)のa≦x≦a+1における最大値 M (α) は,次 のようになる。 [1] a+1 <1 すなわち α <0の [1] y とき f(x)はx=α+1で最大となり 1指針のA [区間で単調増 加で,右端で最大]の場 最大 合。 M(a) =f(a+1) =(a+1)-6(a+1)^+9(a+1) =a³-3a²+4 1 1 a O 1 a+1 3 3次関数のク p.344 の参考 ラフは点対 はない。す るとき 対称ではな 練習 |上の解答の =1/2とし Q= なお、放物 f(x)=x³- ⑤224よ。

回答募集中 回答数: 0
数学 高校生

(2)(3)(4)がよくわからないので教えて欲しいです! あと(2)でn箇所で交わるのはなんでですか?例を書いて欲しいです!

基礎問 208 第7章 数 134 漸化式の応用 列 セレス 20 平面上にn本の直線があって,どの2本も平行でなく,どの3 本も1点で交わらないとき,これらの直線によって平面がαn 個 (3)(2)で考えたように,(n+1) 本目の直線はそれ以前に引いてある直 線とか所で交わり,その交点によって,(n+1) 本目の直線は,2つ の半直線と (n-1) 個の線分に分割されている (下図)。 209 ってい 2 12 (1) の部分に分けられるとする. ① ② ③ [ +1 いる (1) 1, 2, as を求めよ. (n+1) 本目の直線 (2)本の直線が引いてあり,あらたに(n+1)本目の直線を引 いたとき,もとのn本の直線と何か所で交わるか. 1本目 2本目3本目 (e) (3)(2)を利用して, an+1 を an で表せ. (4) α を求めよ. 精講 まず、設問の意味を正しくとらえないといけません.nが含まれて いるとわかりにくいので, nに具体的な数字を代入してイメージを つかむことが大切で,これが(1)です. この(n+1) 個の半直線と線分の1つによって、いままで1つであ った平面が2つに分割される. 30 (N) よって, (n+1)本目の直線によって, 平面の部分は (n+1) 個増える ことになる. ..an+1=an+n+1(n≧1) <階差数列 (123) 直線の数が増えれば分割される平面が増えることは想像がつきますが,問題 はいくつ増えるかで,これを考えるために(2)があります。 (3)が最大のテーマです。 「an+1 を an で表せ」 という要求のときに,41,42, α3 などから様子を探るのも1つの手ですが, それは137 以降 (数学的帰納法) に まかせることにします.ここでは,一般に考えるときにはどのように考えるか を学習します. an と αn+1 の違いは直線の本数が1本増えることです. (4) n≧2 のとき, an=a+(k+1)=2+2+3+…+n) n-1 (1+2+…+n) +1= 1 == 1/2 n ( n + 1) +1 = 1/1/1 (n² + (n²+n+2) これは, n=1のときも含む. 吟味を忘れずに 「 ポイント 漸化式を作るとき, n番目の状態を既知として, (n+1) 番目の状態を考え、 その変化を追う 解答 (a2) 第7章 (1) (a₁) (a3) ① ⑥ (2) ④ 27 ⑤ ③ 演習問題 134 (1) ④ ③ 右図のように円 01,02, … は互いに接し, かつ点Cで交わる半 直線に内接している. このとき, 次の問いに答えよ. 図より, a2=4 (1)円 01 の半径が5, CA1 の長さが12で 12 図より, α3=7 あるとき,円の半径 12 を求めよ. 図より, a1=2 (2) すべての直線は,どの2本も平行でなく,どの3本も1点で交わら ないので, (n+1) 本目の直線は,それ以前に引いてあるn本の直線の すべてと1回ずつ交わっている。 よって, nか所で交わる. (2)番目の円の半径を1とすると き との関係式を求めよ. (3)を求めよ。 01 O2 A2 A1

回答募集中 回答数: 0
数学 高校生

(3)のシグマの式がなぜこうなるのかわかりません。お願いします

13 奇偶で形が異なる漸化式 次のように定められた数列がある. n n+1 α」=1, an+1=an+ 2 (1) 2= |, a3=1 a6=□, a= | (n=1, 3, 5, ...), an+1=an+ である. 2 (n=2, 4, 6, ...) (2) 439= I, so= である. (3) 初項から第40項までの和は である. 奇偶で形が異なる漸化式 (明大・農) の奇隅で形が異なる漸化式は,n=2k-1, n=2kとおいて, 奇数項 (a, ……どうしに成り立つ漸化式。つまり、ak+」をza-」で表す式を立てて解き、もとの漸化式に戻 てを求める. 解答量 1+1 2 (1)q=1より, a2=a+ =2, a=az+ =3, 2 6 5+1 a=a3+ 3+1 L=5.05=a+1/2=7. 2 =7, a6=as+ 2 =10, α7=46+ 2 =13 (2)n=2k-1のとき, (2k-1)+1 α(2k-1)+1=2k-1 + .. azk=azk-1+k 2 2k 2 ( n=2kのとき,a2k+1=a2k+ -=azk+k ①,②より, a2k+1=Q2k+k= (a2k-1+k)+k=a2k-1+2k n≧2のとき, azn-1=a1+(ag-a)+(α5-a3)++ ( an-1-a2n-3) =a+(a2k+1-a2k-1)=1+2k=1+2.- 2.1/2(n-1)n n-1 k=1 n-1 k=1 =n2-n+1(n=1のときもこれでよい) ① から, a2n=azn-1+n=n2+1 ③ ④でn=20として, α39=202-20+1=381, ao=202+1=401 (3) ③ ④ より 20 n=1 20 (azn-1+ a2n)=(2n²-n+2) n=1 =2・1・20-21-41-12 ・20・21+2・20=5570 13 演習題 ( 解答は p.77 ) ④ 奇数項についての漸化式を立て て奇数項を求める。 偶数項は奇 数項からすぐに分かるので, 偶数 項についての漸化式は立てる必 要はない. a=na k=1 次の漸化式によって定義される数列{az} (n=1, 2, ...) について, 次の問いに答えよ. 1 a1=4,a2n=/02n-1+n2, a2n+1=442m+4(n+1) (1) a2, 3, 4, 45 を求めよ. (2), 2n+1をnを用いて表せ. (3){4}の項で4の倍数でないものは,nの値が小さいものから4項並べると, 4, ao, a, a である。 (2) 奇数番目の項だけ に着目する. (3) 2+1 は漸化式か 68 (類 松山大薬) (1) (2) (i (in (i ■解 (1) 左 (2 I

回答募集中 回答数: 0
数学 高校生

この問題の(2)と(3)がよく分からないので教えて欲しいです!!

144 第6章 微分法と積分法 基礎問 90 共通接線 アイは一致するので, 3d²=2a+p, -20°=q- よって, カ=3a-2a, q= -20°+α² 145 5/5 3.0 2つの曲線 C: y=x, D:y=x2+pr+g がある. (1) C上の点P(a,d)における接線を求めよ (2) 曲線DはPを通り,DのPにおける接線はと一致するこ のとき,,g をαで表せ. => '+(3)(2)のとき,Dがx軸に接するようなαの値を求めよ. ばれます (2)2つの曲線 C,Dが共通の接線をもっているということです が,共通接線には次の2つの形があります。 精講 (I型) y=f(x) y=g(x) P a (Ⅱ型) 3y = f(x) y=g(x) Q 適です。 P 違いは、 接点が一致しているか,一致していないかで, この問題は接点がP で一致しているので(I型)になります. どちらの型も、接線をそれぞれ求めて傾きとy切片がともに一致すると考え れば答をだせますが, (I型) についてはポイントの公式を覚えておいた方が よいでしょう. 解答は、この公式を知らないという前提で作ってあります. 解答 (1) y=xより,y'=3だから,P(a, α3) における接線は, y-a3-3a2(x-a) :.l:y=3ax-2a3.......ア C 0186 5 : y = (x + £ ²)² + q − 2² だから, 曲線 (3) D:y= 4 Dがx軸に接するとき,頂点のy座標は 0 D² =0 q- 4 ∴.4g-p20 よって, 4-2a3+α²)-(3-2)=0 4a²(−2a+1)-α(3a-2)2=0 a^{-8a+4-(9α²-12a+4)}= 0 a³(9a-4)=0 :.a=0, 459 注 α=0 が答の1つになること は,図をかけばx軸が共通接線 であることから予想がつきます. (2)はポイントを使うと次のようになります。 f(x)=x, g(x)=x+px+q とおくと f'(x)=3.2g'(x)=2x+p [a=a+pa+g 13a2=2a+p ポイント よって, x²+px+q=0 の (判別式) = 0 でもよい 展開しないで共通因数 でくくる YL p=3a2-2a q=-2a³+a² 10. 2つの曲線 y=f(x) と y=g(x) が点(t, f(t)) を 共有し,その点における接線が一致する f(t)=g(t) かつ f'(t)=g'(t) y-f(t) =f(t)(x-t) (2)PはD上にあるので,a' + pa+q=α ... ① また,y=x'+px+g より y'=2x+p だから, Pにおける接線は,y-d= (2a+p)(x-a) y=(2a+p)x+a³-2a²-pa y=(2a+p)x+q-a² ......①(£) 演習問題 90 第6章 関数 f(x)=x2+2とg(x)=-x+ar のグラフが点Pを共有 し、点Pにおける接線が一致するこのときαの値とPの座標を 求めよ.

回答募集中 回答数: 0
数学 高校生

(1)の解答の最後の式の−1する理由が分かりません。 どなたか教えて頂けますと幸いです! よろしくお願いします🙇

例題 206 三角形の個数(2) A1, A2, A3, ..., A12 を頂点とする正十二角形が ある. この頂点のうち3点を選んで三角形を作るとき, 0 次の個数を求めよ. (1) 二等辺三角形 (2)互いに合同でない三角形 20 A12 *** A1 A2 A3 A11 A4 A10 A5 A9 As A A6 分線について対称になる. 考え方 (1) 二等辺三角形は、右の図のように底辺の垂直二等 ま A1 つまり、頂角にくる点を固定して, 底角にくる点ま のとり方を考えればよい. I A10 # A1 A12 について同様に考えれば,個数を求める ことができるが, 正三角形になる場合に注意する. (2) 頂点間の間隔に着目する. 右の図のように①と②は合同 状 ①と③は合同でない. 0101 012 200s 0.05 解答 (1) A, を頂角とする二等辺三角形は, 線分A1A7 に関して対称な点の組 Q # A4 正三角形は他の から見ても二等 角形なので (A2, A12), (A3, A11), (A4, A10), (A5, A9),セは て数えてしまう A9 A5 coolco (A6, A8) の5通りの A7 頂点は12個より, 5×12=60 (個) 03 このうち, 正三角形となる4個の三角形は3回重複正三角形とな 〇〇〇して数えている。 (A1, A5, Ag か 18 よって 60-(3-1)×4=52 (個)合 (A2, A6. Al (2) 1つの頂点をへ

回答募集中 回答数: 0
数学 高校生

(1)の解答にある最後の式の−1をなぜするのかが分からないです! どなたか教えて頂けますと幸いです。よろしくお願いします🙇

例題 206 三角形の個数(2) A1, A2, A3, ..., ある。この頂点のうち3点を選んで三角形を作るとき, A12 を頂点とする正十二角形が A12 A1 A2 A1 A3 A10 AA A9 A5 次の個数を求めよ. A8 A7 A6 (1)二等辺三角形 (2) 互いに合同でない三角形 分線について対称になる. 方 (1) 二等辺三角形は、 右の図のように底辺の垂直二等 A₁ A1 A12 について同様に考えれば,個数を求める つまり、頂角にくる点を固定して, 底角にくる点ま のとり方を考えればよい. 0 A10 # # AA T T ことができるが,正三角形になる場合に注意する. 3 (2) 頂点間の間隔に着目する. ① 右の図のように①と②は合同 で,①と③は合同でない. 695 01 01st 2000s 05.05 ■ (1) A」 を頂角とする二等辺三角形は, 線分A1A7 に関して対称な点の組 (A2, A12), (A3, A11), A1 (A4, A10), (A5, A9), Ag AA5 正三角形は他の から見ても二等 角形なので重 て数えてしまう blood (A6, A8) の5通り A7 頂点は12個より, 5×12=60 (個) して数えている。 このうち, 正三角形となる4個の三角形は3回重複 正三角形とな A5, Ag (A1, よって, 60-(3-1)×4=52 (個) (A2, A6, Al 2) 1つの頂点をへ

回答募集中 回答数: 0