学年

質問の種類

数学 高校生

次の(3)の問題で左下の青線は絶対値をつけたまま計算していますが何故絶対値をつけて考えるのでしょうか?もう一つな右下の青線で何故2πを出すのでしょうか?どなたか解説お願いします🙇‍♂️

1 Z1 = 2 √3 2 + i, Z2 = 1 + i のとき,次の複素数を極形式で表せ。ただ し、偏角0 の範囲は0≤0<2 とする。 21 (1)2122 (3)122 22 思考プロセス (1)「積を計算 → 極形式」 の順で考えると・・・ √3 +1 √3-1 2122=- ・+ i ← 偏角を求めにくい。 2 2 「極形式で表す ← 公式の利用 「積を計算」 の順で考えると [21=1(cosb1+isin Oi) 積 2122= rir2{cos(01+02) +isin(01+02)} 積 ・和 122=r2(cos02+isin (2) 21 r1 商 -{cos (01-02)+isin (01-02)} 22 12 ・差 商 Action》 複素数の積 (商) は, 絶対値の積 (商) と偏角の和 (差) を求めよ 2 2 解 21 COS +isin⋅ T, -π, 22 = √2 (cos / π π 4 +isin 7 ) より [Z1, 22 をそれぞれ極形式 で表す。 | 21 | = 1, |22| = √2, arg21 = 2 -π, argz2 = H4 22 = √√2 (+) (1) |182|=|21||22| 2 11 = √2, arg2122 = arg21 + arg2 = π 十 12 3 4 12 よって Z122=2cos √ 11 12 π+isin1/12) 21 21 2 21 5 (2) = う arg. = arg21 arg22= πT 22 22 2 22 12 4 23 5 12 21 よって = √2 5 COS 5 y π十isin 22 12 12π 2 8 (3) 21 = = 1, argz₁ = argz₁ = 1/2であるから 3 N 5 21 22 = 21 ||22|=√2, arg2122 = arg 1+argz2 = π 12 ■偏角 0 は 0≦0<2πで 考えるから Z1 Z2 の偏角 よって 2122= √2(cos 19 19 π+isin π 12 12 5 は 12+2x= 19 π 12 9-2

解決済み 回答数: 1
数学 高校生

なぜ0°≦θ≦180°になるんですか 別に360°まででもいい気が、、教えてください。

基本 例題 12 内積の計算(成分) 次のベクトルα,6の内積と,そのなす角 0を求めよ。 00000 (1)=(-1, 1), 6=(√3-1, √3+1) (2) = (1,2) (1-3) /p.379 基本事項 4 指針 内積の成分による表現 a= (a1, a2), 万= (b1,62) のとき,a, ものなす角をする と a.b=a1b₁+a2b2 a.b cos 0= B |a||| 成分が与えられたベクトルの内積はAを利用して計算。 また、ベクトルのなす角はBを利用して, 三角方程式 cos0=α (-1≦a≦1) を解く 問題に帰着させる。 かくれた条件0°≦0≦180°に注意。 (1) 解答 また ろえる BC sin COS a1=(-1)x(√3-1)+1×(√3+1)=2 ||=√(−1)'+12=√2. =√√3-1)^2+(√3+1)²= √8=2√2 よって a coso= 2 |||| V2 ×2√2 0°0≦180°であるから (2) また 0=60° a = 1×1+2×(-3)=-5 lal=√12+2=√5, =√1+(-3)=√10 1 2 (x成分の積)+(y成分の積 ) (1) YA 1 P +60° 1x 0 -1-2 (2) 98 P -5 1 45° 135° h 0 0=135° -11 0 1x √2 a COS 0=- ab √√√√10 0°0≦180°であるから 余弦定理を利用してベクトルのなす角を求める 上の例題 (1) において, a, b のなす角 0は,次のように余弦定理を利用して求めることもで きる。 =OA, 6=OBとする。 2=n+(-n) A(-1, 1), B(√3-1√3+1), 0 = ∠AOB であるから よって OA2=(-1)'+1=2, B(v3-1,√3+1) A(-1,1)/ 2+8-6 1 2/22/2 2 OB2=(√3-1)^2+(√3+1)=8, AB={√3-1-(-1)}'+(√3+1-1)=6 Cos 0= OA2+ OB 2 - AB2 20A・OB 180°であるから 0=60° なす角 1192 CA 次の内県 GUNCA 646 (2つのベクトルα 母を求めよ (2)

解決済み 回答数: 1