学年

質問の種類

数学 高校生

クケなぜチェバの定理使えないんですか?

SELECT 90 Eを,4点A, ずつ選べ。また SELECT 60 である。 AB の なる。 (配点 15 美 57 6 O 56 右の図のように, AB = 9, BC=10, CA=6の△ABCがあり ∠Aの二等分線と辺BCの交点をDとする。 点Aを通り点Dで辺 BCに接する円と, 2 辺AB, AC との交点をそれぞれE, F とする。 , E, FAと異なる点とする。 また, 線分 AD と EF の交 点をGとし, 直線BGと辺ACの交点をHとする。 御 (1) BD= BE = ウ である。 (2) EF:BC= AH また, HC 難易度★★★ であるから アであり, BD イ BE が成り立つから, I : AB となるから, EF= 目標解答時間 である。 (4) △ADE~ △ テ (△AEDの面積) (△DHCの面積) である。 ーゲ 1 については, 当てはまるものを、次の⑩~⑥のうちから一つ選べ。 AC ④ CD 3 AF ② AE ① AD 65 DF (3) △ABCの面積をSとおくと (△AEDの面積) = S (△DHCの面積) [オカ] である。 [ソタ テ については,当てはまるものを、 ② EG (0) CD ① DF 12分 チツ より, AD=トナ] である。ふ B 次の⑩~②のうちから一つ選べ。 El SELECT SELECT 90 60 DEN PAT シ S スセッ回る巻 MEGALA IN OBAQAD ⑥ EG D 8200A90 CE H (配点20) <公式・解法集 26 54 56 58 60 図形の性質 三角形の相似の利用 分 AD は ∠Aの二等分線であるから A BD:DC=AB:AC=9:6=3:2 したがって BD=1 = 10-3-6 ]1 方べきの定理により BD" BE・BA で, BA9 であるから B BD=9BE が成り立つので BE= BD²=6=4 9 9 接線と弦のつくる角の定理により ∠EDB=∠DAE ・・・・・・① 線分 AD は ∠Aの二等分線であるから ∠DAE=∠DAF ...... ② また、同じ弧に対する円周角より |∠DAF=∠DEF ...... ③ ① ② ③ より |∠EDB=∠DEF 錯角が等しいので EF // BC したがって AAEFo AABC AD よって EF: BC = AE: AB (②) |ここで, AE=AB-BE=9-4=5 より EF:10=59 EF= _105_ 9 AG: GD = AE: EB = 5:4 して 5.3 CH 4 5 HA よって 50 また, △ADCと直線BHにおいて, メネラウスの定理により AG DBCH=1 GD BC HA ここで, EF // BC より AH_3 HC <Point -=1 J2 」 2 2 G D A 角の二等分線と比 △ABCにおいて,∠Aの二等分 線と辺BCの交点をDとすると BD:DC = AB:AC C B 方べきの定理 下の図で 12 PA-PB=PT" (PTは接線, Tは接点) HE D C CA P• C 接線と弦のつくる角の定理 下の図で T ∠ACB=∠BAT ( AT は接線) -T D △AEF と △ABCにおいて <EAF =∠BAC (共通) また、平行線の同位角より ∠AEF=∠ABC B 2組の角がそれぞれ等しいの AAEF có AABC D

未解決 回答数: 2
数学 中学生

平面特集①② 【すけさん】お願いします🙇‍♀️

問3の平面特集 ① 名前( カ 右の図において、 四角形 ABCD は平行四辺形である。 Eは辺BC上の点であり、 B: EC-32であり、 点はCDの中点である。 また、点Gは線分Bの中点であり、 点は線分 AEと線分PGとの交点である。 三角形 HGEをS. 四角形 HECF の面積をTとするとき、SとTの比を最も簡単 な整数の比で表しなさい。 GE:EC GH:HT 3=4 ( 右の図2のような長方形ABCD があり、点Eは辺BC上の点で, BB-4cm である。 また、 Fは辺CD を D の方向に延ばした直線上の点で, DF-2cmであり、辺ADと 線分EF との交点をGとする。 さらに、三角形ABGの面は三角形ABE の面積の2倍であり、四角形GECDの面積 は三角形ABE の面積の2倍である。 9/15 9/1600 このとき、 長方形 ABCDの面積を求めなさい。 DAEG=ABE DGECD=2ABE 右の図のように、三角形ABCの辺AB上に2点D, E, AC上に2点F, G を DF //EG//BC となるようにとる。 AB=6mm であり,三角形 ADF と四角形 DEGP と四角形 EBCG の面がすべて等しいとき、分 DEの長さを求めなさい。 A APDF DDEGF=DEB C G ) (右の図において、 四角形 ABCD は AB4cm, AD=5cm の長方形であり, 点Bは辺BCの中点 である。 また、点Fは辺AD上の点点G は CD 上の点で、 AP: FD=DG: CC-12である。 分 AC と 分 BFとの交点を H. 分 AC と線分EG との交点をとするとき、 四角形 HBE1 4 の面積を求めなさい。 AHHC 1:3 AI=IC. 25:3 75:30 図2 OBHI+DIBE 5xxx -x +4 15.2 = 6³² + ² = 65+ Wed, 4, 6, MAD HERPE AFPB-13 となるようにとり、線分 FCと線分EDとの交点をGとする。 このとき、 分 FCとGCの長さの比を最も簡単な整数の比で表しなさい。 2 KONZERT, HA R. C. DUROOMEDACON), - - ある。 BDC=6のとき, ∠ABDの大きさを求めなさい。 (カ) 右の図3のような平行四辺形ABCD があり, CD=10cmである。 辺AB上に点EをAB EB-41 となるようにとり。 分 EDと線分 AC との交点をF とする。 また、辺BC上に点GをAB//FGとなるようにとる。 このとき,線分PGの長さを求めなさい。 (ウ)右の図において、直線①は関数y=-2x+2のグラフである。 Aは直①と②との交点で あり,点Bはり軸上の点で、その座標は5である。 とりと直で囲まれた部分(色がついた部分)の内部および周上にある格子点 座標と 根がともに整数である点の個数を求めなさい。 なんで同上にあると分かる? →0からの直線がちになる から(345) 18個 1 図3. ① 図3 品 図3 (5₂0) (3 f) (0,3) (0.4) (0,5)

未解決 回答数: 1