学年

質問の種類

数学 高校生

この問題をlogを使わずに解くことはできませんか? もしできるなら、その手順を教えてください

470 重要 例題 38 am = pa型の漸化式 a=1, an+1=2√an で定められる数列{an}の一般項を求めよ。 指針 に がついている形, a㎡²2 や an+] など 累乗の形を含む漸化式 解法の手順は ①1 漸化式の両辺の対数をとる。 am の係数りに注目して、底がりの対数を考える。 -log.MV=log..M+log.N logpasti = logsp+logpan" ←log A=klog.M すなわち logpan+1=1+qlogpan [2] logpam=ba とおくと 0m+1=1+gbm but=b.+▲ の形の漸化式 (p.464 基本例題 34のタイプ)に帰着。 対数をとるときは, (真数) > 0 すなわち a>0であることを必ず確認しておく。 CHART 漸化式 α+1 = pa" 両辺の対数をと よって, an+1=2√an の両辺の2を底とする対数をとると log2an+1=loga 2√an log2an+1=1+ ゆえに α=1>0で, an+1=2√an(>0) であるから, すべての自に注意 解答然数nに対して an>0である。 -log₂ an 2 bat1-1+1/230円 bn+1-2=1/12 (6-2) 10gzam=bm とおくと 00000 これを変形して ここで bı-2=10g21-2=-2 よって,数列{bm-2} は初項-2,公比 の等比数列で An-1 bn-2=-2 =-2(12) すなわち bm=2-23- したがって, log2an =2-22 から an=22-2 antipa 厳密には、数学的 で証明できる。 ◄loga(2-a) 練習 α1=1, an+1=20m² で定められる数列{an}の一般項を求めよ。 ③ 38 = log22+=logia, ◆特性方程式 a = 1+120 を解くと α=2 =2¹-" logaan=pand" anan+1 を含む漸化式の解法 検討 anan+1のような積の形で表された漸化式にも両辺の対数をとる が有効である。 例えば, logcanan+1=10gcan+logcan+1となり, logcan と 10gean+1の関係式を導くことが できる。 [類 慶応大] p.496 EX21 a

回答募集中 回答数: 0
数学 高校生

答えを見てもよくわからないので教えてもらいたいです!

AX の和 9,35 用 確率と漸化式 (1) 日本 例題 37 00000 12, 3, 4,5,6,7, 8 の数字が書かれた8枚のカードの中から1枚取り出し てもとに戻すことをn回行う。 この回の試行で、数字8のカードが取り出 をnの式で表せ。 される回数が奇数である確率 CHART 確率と漸化式 2回目と (n+1) 回目に着目 & SOLUTION 回の試行で、数字8のカードが取り出される回数が奇数である n 確率がpn であるから, 偶数である確率は 1-pr (n+1)回の試行でDn+1 を求めるには, 次の2つの場合を考える。 n回の試行で奇数回で, (n+1) 回目に8以外のカードを取り出す [1] n n [2] 回の試行で偶数回で, (n+1)回目に8のカードを取り出す 解答 (n+1)回の試行で8のカードが奇数回取り出されるのは, [1] n回の試行で8のカードが奇数回取り出され, (n+1)回目に8のカードが取り出されない [2] n回の試行で8のカードが偶数回取り出され, (n+1)回目に8のカードが取り出される のいずれかであり, [1], [2] は互いに排反であるから 7 Pn+1=Pn• g + (1 − Pn) • _ _ = ³ / Pn + = = = 3 8 LO 変形すると したがって Pn+1 Pi +- 2 - ³ (P-1) 4 1 3/YOSH 1 1 1 2 8 2 また よって,数列{ po-12/2} は初項 - 18 公比 24 の等比数列で 3 3 あるから 1 2 - 3/3\n-1 8 4 3 8 Pn 1 1/3\n pn = ²/2 - 1/2 (³)" - ²1 (1-(³)"} Pn = 24 (1) P1, P2 を求めよ。 (C) 1 (3) Pm を求めよ。 D 8 98* 30 (+1)回目 inf. ① 確率の加法定理 事象 A,Bが互いに排反 (A∩B=①) のとき P(AUB)=P(A)+P(B) ② 独立な試行S, Tで、 Sでは事象A, Tでは 事象Bが起こる事象をC とすると P(C)=P(A)P(B) =-2a+1/2 を解くと a=²1/22 は 1枚目のカード が8の確率であるから 1 Aneke PRACTICE 37 ③ さいころをn回投げるとき,6の目が出た回数をXとし,Xが偶数である確率をP とする。 (2) P1 をP を用いて表せ。 (1) [学習院大 ]

回答募集中 回答数: 0
数学 高校生

右に書いてある「第1項が〜」のところの詳しい説明をして欲しいです。

mink 例題 B1.25 (等差数列)×(等比数列の和 TROVA 次の和を求めよ. S=1・1+2・3+3・3' + 4・' +......+n." - 「(同志社大改) 10 July S = 1 ·1+ 2 3+ 3 3° + 4 3 +..... + n ・3" - 1 考え方 各項の前の部分に着目すると, 解答 1, 2, 3, 4, OS DO さらに,各項の後の部分に着目すると, S=1・1 +2・3 + 3・3 + 4・3°+....‥+n3"~】 ①② より Focus -10) I+ よって, 7-1 1,33, 3.......... 等比数列 (初項1,公比 3 ) となる. JENSE BUUROOR H つまり,一般項a, は, am=n3"'= (等差数列)×(等比数列)となる。 この形の数列の和は,公比r(ここでは3) を利用して, S-S を計算するとよい。 an からま S=1·1+2·3+3·3³+4·3³¹+ ··· + n.3¹ 両辺に3を掛けると, 両辺に公比の3を掛 ける. 3S= 1・3+2・3°+3・3°+..+(n-1) 3"'+n・3" 11の和 1.(3-1) 3-1 n.3"= ・3"- 2 -2S=1・1+(2−1)・3+ (3-2)・32+(4-3)・3°+.・.・. 1.6 SOL ......+{n-(n-1)}・3"'-n・3" =1・1+1・3+1・3°+1・3°+...... +1.3"--n・3" =1+3+3+3°+…..... +3"'-n・3" 1 大変だが - n.3" 2+1; 等差数列 (初項1,公差1) 2 **** 3" S= 1 + 1/2-3²= 3³ (2n-1) + 1 M) =·3"+=+₁ -n. 4 4 47 an = (等差数列)×(等比数列) の形をした数列の和 S > S-rs を利用 ・・ (8) 各項の前の部分が1 になるように差をと り、各項の後の部分 に着目して考える。 は初項1,公比 3の等比数列の初項 から第n項までの和. ただし, の第1 項目が等比数列の初 項にならない場合も ある. (2) sl 10+A) & KI+A)} TOM

回答募集中 回答数: 0