学年

質問の種類

物理 高校生

黄色でマーカー引いたところがどうして2πx/16となるのか分からないです。教えてください🙇‍♀️

入 =2.0mである。 波の速さをv[m/s」として、 発展例題 30 正弦波の式物理 図のような正弦波が, x=0を波源として, x 軸の正の向きに進行している。 実線の波形から 最初に破線の波形になるまでの時間は, 0.10s 0.100 であった。 実線の状態を時刻 t=0s とする。 (1) 波の伝わる速さ, 周期, 振動数を求めよ。 (2) t=0sにおける波形を式で示せ。 (3) x=0mの媒質の変位y〔m〕 , 時刻t [s] を用いて表せ。 指針 正弦波の波形や, 単振動をする媒質 の変位は,いずれも sinを用いた式で表される。 それぞれの式は、波の波長や周期, 振動のようす をもとにして考えることができる。 解説 (1) 波は 0.10s間に2.0m進んで 2.0 0.10 おり, 速さは, v=· 図から, 波長 = 16m なので,周期Tは, T= 入_16 V 20 = 0.80s =20m/s 振動数fは, f= =1.25 1.3Hz T 0.80 (2) 図の波形において, 1波長分 (入=16m) はな れた位置どうしでは位相が2異なり, t=0の とき x=0の媒質の変位はy=0 なので, 位置 2 1 CATO -1 -2 y〔m〕 10 発展問題 356 進む向き 20 088 x(m) NEOT 126 W= 2π 77" xでの位相 (sin の角度部分)は、2016=7 8 と表される。 また, x=0 から x>0 に向かって まず波の山ができており、波の振幅が2.0mな ので,求める波形の式は, y=2.0 sin- DIVER A (3) 媒質の振動では1周期 (T= 0.80s) 経過する ( と位相が2進み, x=0の媒質の変位は,図か ら,t=0のときにy=0 なので、時刻t におけ る位相 (sin の角度部分) は, 2π- t =2.5t と (部分)は,270.80 表される。 また, x=0の媒質は, t = 0 から微 小時間後に負の向きに動くので、求める変位y の式は, y=-2.0sin 2.5t TIC 199 TX 8

回答募集中 回答数: 0
物理 高校生

問9で、sinθ=√3/4なのは何故ですか?

例題 2 屈折波の波面 図のように,平面波が境界面に達した。 屈折 波の波面を作図せよ。 ただし, 媒質 I に対す る媒質ⅡIの屈折率を2 とする。 2 (+式 (9)) から, 01=n12=2 V₂² V₁ T 境界面 -= 1212 V₁ 指針 屈折の法則 -=n1z(p.152・式(9))から, 媒質ⅡIにおける波の速さが,媒質 V2 Iにおける速さの何倍になるかを求める。 ホイヘンスの原理にもとづいて素元波を描 き, 屈折波の波面を作図する。 解 媒質 I, I における波の速さをそれぞれ v1, v2 とすると, ma 逆の屈折る V₁ V2 V2 であり、媒質 Ⅱ における波の速さは, 媒質 Ⅰ における速さの1/12/2になる。図のように,B2 からAB におろした垂線とA,B との交点 B2C の素元波 (半 をCとして, B, から半径 円) を描く。 このとき, B2 からこの素元波に 2 引いた接線が, B2 を通る屈折波の波面となる。他の波面は,入射波の波面と境界面の『 交点から,この接線に平行な線を引くことで求められる。 B1 B2C 2 B2 入射波 の波面 媒質 Ⅰ A2 媒質 ⅡI] 屈折波 の波面 入射波 の波面 媒質 Ⅰ 媒質 Ⅱ 問9 類題例題2で,入射波の波面と境界面のなす角を60° とする。このときの屈折角 を0として,sin0 の値を求めよ。答えは分数のままでよく, ルートをつけたままでよい。 8 平面波 障害物に を送ると, にまわりこ 回折は, 部分にも すき間 (a))。 した る (図 波長よ の

回答募集中 回答数: 0