学年

質問の種類

数学 高校生

この問題の問1においてX、Y両方に0を代入して微分したらa=a+a=2aになって a=0となると思うんですがなぜそうされてないのですか?

演習/例題154 関数方程式の条件から導関数を求める 関数 f(x) は微分可能で,f'(0)=a とする。 (1) 任意の実数x,yに対して, 等式f(x+y)=f(x)+f(y) が成り立つとき f(0),f'(x) を求めよ。 (2) 任意の実数x,yに対して、 等式f(x+y)=f(x)f(y), f(x) > 0 が成り立つと f(0) を求めよ。 また, f'(x) を a, f(x) で表せ。 演習 152 指針 このようなタイプの問題では, 等式に適当な数値や文字式を代入する ことがカギとなる。 f(0) を求めるには,x=0 やy=0 の代入を考えてみる。 また,f'(x) は 定義 f'(x)=limf(x+h)-f(x) h 入して得られる式を利用して, f(x+h) f(x) の部分を変形していく。 JJBR$15 ask f'(x)=lim 解答 (1) f(x+y)=f(x)+f(y) ① とする。 ① に x=0を代入すると f(y)=f(0)+f(y) ア よって f(0)=0 また, ① に y=h を代入すると f(x+h)=f(x)+f(h) ゆえに f(x+h)-f(x) h h→0 ...... h→0 ...... f(h) h =f'(0)=a =lim h→0 ƒ(0+h)-f(0) =lim TAMS HOh-oh E h HAPO f(x+₁)=f(x) f(v₂) ③とする (*) に従って求める。 等式に y=hを代 x=x=0を代入してもよい。 ア の両辺からf(y) を引く。 <f(x+h)=f(x)+f(h) から f(x+h)-f(x)=f(h) ƒ(+h)-f( h lim h→0 26 | (*) f(0)=0 -=f'(■)

回答募集中 回答数: 0
数学 中学生

何言ってるかぜんっぜん分からないので簡単に教えてください🙇‍♀️

mm とする。 いものを1 ところ、 福9→ 文字式の利用 ■平成26年度問題 3 右の表は2から50までの偶数を順に並べたものである。 表の間に位置している 4. 6. 14. 16 や、 場 に位置し ている 16 18 26.28 のように.表 に位置している4 つの偶数において最も大きい数と2番目に小さい数の和の2 乗から、2番目に大きい数と最も小さい数の和の2乗をひいた 差は32でわりきれることの証明を, 文字を使って (証明) 32 #294 FEBA JE したがって, 4つの偶数において最も大きい数と2番目に小さい数の和の2乗から, 2番目に大きい数と最も小さい数の和の2乗をひいた差は, 32 でわりきれる。 調べたこと (3 0以上の整数より大きくn+1より小さい分数のうち. 分母が3で分子が自然数である 数の和について調べ, 表にした。 n=0のときは, 1/31 01/23 の2つの分数があるね。 n=0のとき 1/3+1/8-12-1 n=1のとき 1/3+1838-11/13- = n=2のとき 73+8=18-5 n=3のとき 1+1=232-7 =3 2 46 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 の中に完成せよ。 表 nの値 0 和 2 3 1 3 5 7 1 調べたことと表から, 0以上の整数nより大きくn+1より小さい分数のうち、分母が3 で分子が自然数である数の和は奇数になると考え,次のように予想した。 数P 予想 10以上の整数 nより大きくn+1より小さい分数のうち、分母が3で 分子が自然数である数の和は. 2n+1になる。 予想がいつでも成り立つことを証明 ① のように証明した。 証明① 0以上の整数nより大きくn+1より小さい分数のうち、分母が3で 分子が自然数である数は, nを用いて 3n+1.3n+2 と表される。 これらの和は, 3n+13n52=6n53-2 -=2n+1 したがって, 0以上の整数nより大きくn+1より小さい分数のうち、 分母が3で分子が自然数である数の和は, 2n+1である。 前を参考にして, 0以上の整数より大きく〃 +1より小さい分数のうち、分母が5で分 子が自然数である数の和について考える。 分母が5のとき 整数nより大きくn+1より小さい分数は いくつあるのかな。 次の (1) は最も簡単な数で. (2) は指示にしたがって答えよ。 (1) n=1のとき、nより大きくn+1より小さい分数のうち、 分母が5で分子が自然数である数をすべて求めよ。 (1) (2) 0以上の整数nより大きくn+1より小さい分数のうち、分母が5で分子が自然数であ る数の和は、4n+2であることの証明 ② を完成せよ。 証明② 0 以上の整数nより大きくn+1より小さい分数のうち, 分母が5で分子が自然数 である数は, n を用いて したがって, 0以上の整数nより大きく n +1 より小さい分数のうち、分母が5で 分子が自然数である数の和は, 4n+2である。 数 P9 A26 3 最も小さい 2n + (4n -16² 1or²

回答募集中 回答数: 0