学年

質問の種類

理科 中学生

印が付いている問題がわかりません。解説できる方、お願いします。答えは(3)イ(4)アです。

電流と磁界 ② 278m (R5 石川改) 〈14点×3> 図1 電源装置 スイッチ 抵抗器 エナメル線でコイルと回転軸をつくり、回転軸のエナメルをすべて はがした。図1のように、回路をつくり, コイルの下部を黒く塗った。 その後、スイッチを入れたところ, 回路にはの向きに電流が流れ, コイルの下部がの向きに力を受け, コイルは動き始めたが,まもな く静止した。 電源装置からは一定の向きに電流が流れるものとする。 一口(1) 一定の向きに流れる電流を何というか。 軸受け コイル 回転軸 電流計 観察する向き U字形磁石 コイルの下部 図2 N コイルが回転し続けるようにスイッチを入れたり切ったりしたい。 図1の 装置 180° 135° 225° コイルの黒く塗った部分がどの範囲を通 の向きに見た図2で, 過しているときにスイッチを切るとよいか。 次のア~エから1つ選びなさい。 90° 270° ア 0°~180° イ 90°~270° 図3 315° コイルの上部 ウ 180°~360° 観察する 向き コイルが コイルの黒く 回転する方向 360° 塗った部分 S エ 270°~360° と 0° ~ 90° コイルの下部 (3)この後、図3のようにコイルと磁石を設 置しなおした。 スイッチを入れるとコイル S はどのように動くか。 右ア のア~エから1つ選びな さい。ヒント H (1) 2 (3) ヒント (1) 2Ωの電熱線に2.0Vの電圧が加わっていることから、流れた電流の大きさがわかるね。 (3) コイルの上部とコイルの下部にはたらく力の向きをそれぞれ考えよう。 [107]

回答募集中 回答数: 0
数学 高校生

一番のx=って点ABの座標だと思うんですけど、2番で①が実数になるからと言っている意味がよく分かりません、交点をとるからという意味ですか?

●7 斜めの回転体 1 曲線 y=- IC >0) をCとする。 直線 y=x上の点Pにおいて直線y=xに直交する直線を考 える. この直線と曲線Cは2点 A, B で交わっているとする (2) 曲線と直線x+y=4で囲まれた部分を直線y=xの周りに1回転してできる回転体の体 (1) Oを原点(0,0)とし, OP=1とするとき, 線分AP の長さを†で表せ。 積を求めよ. 回転軸上に変数をとる 回転軸が斜めになっている場合であっても,回転 軸上に変数(目盛り)をとれば、座標軸が回転軸の場合と同様,体積を S's (1) dt で計算することができる。 ここで, S(t)は右図太線での回転体の 断面積である. 回転軸上に変数をとるとは,「回転軸上の定点(例題ではO) からの距離を変数で表す」ということで、例題ではこのような設定になって いるので難しく考える必要がない。 演習題のように変数をとる場合は注意が必 (演習題の解答のあとで解説する) 解答量 (1)Pは第1象限にあるので, OP=t のときP (津田塾大学) t t=b t=a 回転体の断面積S(t) t √2 このときにx+y=√2tだから,C:xy=1と連立し て」を消去すると, C (√2t-x)=1 :.x2-√2tx+1=0 x= √2t±√2t2-4 2 複号のマイナスの方をAとして t AP=√2 √2 √21-√2(12-2) 2 =√t-2 P t x+y=4 B XC V2 P (2) ①が実数になるので 212-40 すなわち√2 であり,また, 1:x+y=√2tx+y=4と一致するとき, t=2√2 である. よって, 求める体積 V は, 2√2 v=f2x· AP²dt= V= 2/2 ·AP²dt=√(t²-2) dt=r -13-2t 2√2 Cは直線 y=x に関して対称だ らPはABの中点になる. ={16/2-4√2- 2 √2-2√2 2 π

回答募集中 回答数: 0
物理 高校生

(6)で磁場による力が働いているのにエネルギー保存則が成り立つ理由を教えてください

(4)(ア)から(エ)の全区間でコイルに生したジュール熱の総量を求めよ。また、この総量とコイ ルの速さを一定に保つために作用させた外力との関係を述べよ。 129. 〈斜面上を動く正方形コイルに生じる誘導起電力〉 図のように、水平面となす角度が ⑥ (0x0<)の十分 長い斜面がある。この斜面に、質量がm, 電気抵抗が R, 磁場 B JAC [21 高知大改 A D 1 m.R B M x 0 1辺の長さがdの正方形の1巻きコイル ABCD を置く。 いま、斜面にそって下向きをx軸にとる。斜面上のx≧0 この領域には、面と垂直上向きに磁場があり,その磁束密度 の大きさはxの関数として, B=kx で与えられる。 こ ここでは正の定数である。 コイルの自己インダクタンス, およびコイルと斜面の間の摩擦力はないものとする。 重力加速度の大きさをgとする。 初めに、コイルの辺BCがx軸と平行で,辺AB と辺 CD の位置が,それぞれ, x=0 と x=dになるように置いた。 この状態から, コイルを静かにはなしたところ, コイルは辺 BCがx軸と平行なまま。斜面にそって下向きに動きだした。 辺ABが位置 xにあり,速さで運動している瞬間について,(1)~(6)に答えよ。答えの式 は,m,g, R, k, x, devのうち必要なものを用いて表せ。 (1) 辺ABの両端に生じている誘導起電力の大きさ V」を求めよ。 また, 電位が高いのは端A と端Bのどちらか答えよ。 (2) コイルに生じている誘導起電力の大きさ Vを求めよ。 Xxx dayRoux よって、 E=Bwx OPの電力の大きさV[V] とれるから V-12/Baw まるようになるか OPのである。 P(W) 抵抗で R に流れる電流の大きさ であるから 受ける力の式「F= (4)の向きが②だから、フレ 仕事率(W) は、 (7) Baw Ba 131〈相互誘導〉 2 AR ファラデーの電磁誘導の法則 比較する。 が流れているコイル <コイル」を貫く磁束のは、 SISL N₁ 電流が

回答募集中 回答数: 0