学年

質問の種類

英語 高校生

全部の間違っているところの解説お願いします 明日までなので至急お願いします

19 次の英語は日本語に、日本語は王線を主語にし、英語に直しなさい。 (23) 1. この旅行の主な目的はローマ (Rome) を訪れることだ。 2. This area is too dangerous to go out in at night. 3. この本は初心者が理解しやすい。 10 ( )に入る最も適切な語句を①~④の中から選び、記号で答えなさい。 (1×10) 2 forget 1. A: I came here for an important meeting with Janet, but she's not here yet. B: She seems rather careless ( ) the appointment. Dto forget forgetting for forgetting 2. Don't expect ( ①me to cover ) for you this time. ②me cover 3me covering 1 cover 3. Juliet was studying the map to decide which route ( ). ①takes ②taking ③to take Dtook 4. This city is easy ( Dfor reaching ) by public transport. 2to be reaching 3 to have been reached to reach ②to 5. They have three dogs to look after, not to ( Dmention ②say ③speak 6. He is prepared to help you if you want him ( Ddo ③it ) the cat and the bird. Otell ). ①do it 7. It was not long before Paul ( Dbecame ②came ) to realize how serious the situation was. ③went ①turned 8. I was ( ①very busy to ) pay attention to what he was saying. ②too busy to ③so busy that 9. To ( ①give ) matters ( ), he got pneumonia after breaking his leg. pause ②take - bad 10. The president of our company is ( ②being delivered ①deliver Dquite busy that ③make - worse Oput double a speech at the party tomorrow. 3delivered Oto deliver

回答募集中 回答数: 0
数学 高校生

数学Aの問題です。DGの中点Hは▲BDGの外心である。というところが理解できないです。なぜ外心になるのですか?よろしくお願いします。

138 (1)円と直線に関する次の定理を考える。 3点P,Q,R は一直線上にこの順に並んでいるとし,点Tはこの 定理 直線上にないものとする。 このとき, PQ・PR=PT2 が成り立つな らば、直線PT は 3 点 Q,R, T を通る円に接する。 この定理が成り立つことは,次のように説明できる。 直線 PT は 3点 Q,R,Tを通る円0に接しないとする。このとき,直線 PT は円Oと異なる2点で交わる。直線 PT と円0との交点で点Tとは異なる点 を T' とすると, PT・PT'= イが成り立つ。 点と点T' が異な ることにより, PT・PT' の値と PT2の値は異なる。 したがって, PQ・PR=PT2に矛盾するので,背理法により,直線 PT は3点 Q,R, T を通る円に接するといえる。 ア イ の解答群(解答の順序は問わない) PQ ①PR 2 QR 3 QT ④RT (2)△ABCにおいて,AB= BC= AC=1 とする。 3 4 ウ このとき,∠ABC の二等分線と辺 AC との交点をDとすると,AD= I である。 直線 BC 上に, 点Cとは異なり, BC=BE となる点Eをとる。 数学A AC ∠ABE の二等分線と線分AE との交点をFとし、直線ACとの交点をGとす オ △ABFの面積 キ ると, である。 AG カ △AFGの面積 ク ケ 線分 DG の中点をHとすると, BH= である。 また, AH= コ シ’ A ス CH= である。 セ △ABCの外心をOとする。 △ABCの外接円0の半径が ることから、線分BH を 1:2に内分する点をI とすると IO= [ト ナ] であることがわかる。 ニヌ タチ であ [22 共通テスト追試] SAL

回答募集中 回答数: 0