学年

質問の種類

数学 高校生

4番がよくわかりません汗 理由は写真2枚目に記載しています。

例題 136 進数の四則計算 XX 計算の結果を、[ ]内の記数法で表せ。 [1111(2) +110 (2) [2進法 ] 3420 (5)2434 (5) (1101 (2)×101 (2) [2進法 ] 0 1101001 (2)÷101 (2) CHART L & SOLUTION (2)+0(2)=0(2),(2)+1(2)=1(2)+0(2)=1(2), 1 (2)+1(2)=10(2) (1), (2) 2進数の足し算 引き算では,次の計算がもとになる。 020(20(2),1(2)-0(2)=1(2), 1(2)-1(2)=0(2), 10(2)-1(2)= 1 (2) 一般に,進数の足し算、引き算も、10進数や2進数と同様に 00000 [5進法 ] [2進法] p.476 基本事項 1 繰り上がり (n-1)(x) +1(㎡)=10(木) 繰り下がり 10() -1(n)=(n-1) (n) に注意して計算する。 (3) 2進数の掛け算では,次の計算がもとになる。 筆算では、2進数の足し算も行う。 0(2) X0(2)=0(2) X1(2)=1(2) X0(2)=0(2), 1(2) X1 (2)=1(2) 2進数の割り算は, 10 進数の割り算と同様、掛け算と引き算を組み合わせて行う。 485 4章 16 (1) 1111(2)+110(2)=10101 (2) (2)3420 (5)-2434 (5)=431(5) 111 11 1111 1+1=2=10(2) に注意し M 3420 ←5進法では 10 11 13 + 110 て上の桁に1を上げる。 -2434 - 4 - 3 - 4 10101 431 I 3 4 16-3-3 (3)1101 (2)×101 (2)=1000001 (2) (4) 1101001 (2)÷101 (2)=10101 (2) 1101 11101×1 の結果。 19101 x 101 1101×100の結果。 2進法では 110 101) 1101001 111 ③和を計算。 (1) と同様 -101 101 11010 に繰り上がりに注意。 1 110 1101 10進法では 1000001 101 110 (2)=6,101 (2)=5 101 であるから 6-5=1 101 0 進法、座標 別解 10 進数に直して計算し、 最後に n進数に直す方法で計算する。 確実な方法 11111 (2) +110(2)=15+6=21=101012 (2) 3420 (5) 2434(5)=485-369=116431(5) 3)1101 (2)×101(2)=13×5=65=1000001 (2) 4) 1101001 (2)÷101(2)=105÷5=21=10101(2)

解決済み 回答数: 1
数学 高校生

赤く印をつけたところが分かりません。 どなたか解説お願いします🤲

442 重要 例題 131 N” の一の位の数 散料 (1) 182020 10進法で表すとき,一の位の数字を求めよ。 (2) 1718 を5進法で表すとき,一の位の数字を求めよ。 CHART O 解答 OLUTION N” (N, n は自然数)の一の位の数 一の位の数字のサイクルを見つける ・・・・・・ (1)18の一の位の数字8 に着目して 8×8=64 から 182 の一の位の数字は 4 更に 4×8=32,2×8=16,6×8=48 よって、18” の一の位の数字は 8 4 2 6 の繰り返しになる。 00000 基本128 (2)(1) と同様に考えて,まず 1718 を 10 進法で表したときの一の位の数字を求め る。それをαとすると 178 10A+α (Aは正の整数)と表される。 104を5 進法で表すと一の位の数字は 0 であるから, αを5進法で表したときの一の位 の数字が求める数字になる。 (1)8×8=64,4×8=32, 2×8=16,6×8=48 であるから, 18 口を10進法で表したときの一の位の数字は、4つの数 8, 4, 2, 6 の繰り返しとなる。 ここで 2020=4・505 であるから, 182020 の一の位の数字は 6 である。 (2)7×7=49,9×7=63, 3×7=21, 1×7=7 であるから, 17 を 10 進法で表したときの一の位の数字は, 4つの数 7, 9, 3, の繰り返しとなる。 1 ここで 18=4・4+2 であるから, 1718 を10進法で表したとき の一の位の数字は9である。 このとき 1718=10A+9 (Aは正の整数) と表され, 10A を 5進法で表すと,一の位の数字は 0 である。 したがって, 求める数字は9を5進法で表したときの一の位 の数字であるから, 9=5'+4 により 4 2020 を4で割ると余り は 0 よって,4つの数字 8, 426の4番目が一の 位の数字。 10A を5で割ると割り 切れるから、余りは 0 9は5進法で 14(5) ()sia-s

未解決 回答数: 1
数学 高校生

この写真の問題の、(3)についてなのですが、なぜ0乗も数に入るのかがわからないです泣、他にやった問題では0乗が無かった気がして、、回答お待ちしてます…!

580 解答 基本例 146 記数法の変換 である。 (1) 10進数 78 を2進法で表すと 5進法で表すと [ , (2) nは3以上の整数とする。 (n+1) と表される数をn進法で表せ。 (3) 110111 (2),120201 (g) をそれぞれ 10 進数で表せ。 指針 (1) 10進数をn進法で表すには,商が 0 になるまでnで割る割り算を繰り返し、出て きた余りを逆順に並べればよい。 次の例は,23を2進数で表す方法である。 右のように, 商が割る 商余り 数より小さくなったら 割り算をやめ, 最後の 商を先頭にして, 余り を逆順に並べる方法も ある。 2) 23 余り 2)11 ... 1 ⇔ 23=2·11+1 15 1 ⇔ 11=25+1 1 5=22+1 2=2.1+0 0 0… 1 ⇔ 1=20+1 よって, 23の2進数表示は10111 (2) (2)(3)nを2以上の整数とすると, n進法でakak-2 正の整数はnan-int+azon² tain' taon 2 2 2 2) 1 (1) ( 278 余り 2)39 2)19 2 2) 9 2 4 022) 1 1OXLX0 +un+onal 0 (2) は, (n+1)^ を展開してみると, わかりやすい。 (3) 例えば,121 (3) なら, 1・32+2・3' + 1・3°=9+6+1=16として10進数に直す。 ... 1 1 2 0 0 1 1 (ao, a1,a2,......,ak-1, 4k は0以上n-1以下の整数,x≠0) NXJE (5)78 余り I 5) 15 3 ↑ 5) 3 0 0 3 ... よって (ア) 1001110 (2) (イ) 303 (5) 00000 p.578 基本事項 重要 151、 (2) (n+1)²=n²+2n+1=1•n²+2•n¹+1•nº nは3以上の整数であるから, n進法では 121(n) (3) 110111 (2)=1・2+1・2^+0.2°+1・22 + 1・2' +1.2° = 32+16+0+4+2+1=55 120201 (3)=1・35+ 2・3' + 0.33 + 2・3' + 0・3' + 1.3° = 243+162+0+ 18+0+1=424 223余り 2)11 1 2 51 2 SAY ... 2 1 ··· 0 商 と書かれた k+1桁の の意味である。 [2+01+01 78-1•26+0.25 +0.2¹ 014-0001 +000 +1•2³+1·2² +1•2¹ +0・2°と表される。 1001110 (2) よって また, 178=3-5²+0·5¹+3•5º とも表されるから 303(5) (003 014001-1+000138 (2) n) n²+2n+1 n)n +2 n)1 … 1 2 0 ... 1 から121() としてもよい。 練習 (1) 10 進数 1000 を5進法で表すと 9 進法で表すとである。 ① 146 (?) n lt 5 NLA #₂ 0.11 10進数 数 (2)

解決済み 回答数: 1
情報:IT 高校生

情報の問題で(4)教えて欲しいです!

【問題1】次の文章を読み、以下の各問いに 答えなさい。 右図は自然界の連続波の代表である 「(A) 波」である。 「(A)波」は空気を振動させるこ とによって発生する縦波であり、空気や水など 9 の媒体がない場所では伝わらない。 この 「(A) 波」をディジタル化するには3つ の手順を踏んで行っていく。ディジタルオーデ イオプレーヤーやスマートフォンなどから聞い ている (A)は必ずこの手順を踏んでディジタ ルにされているのである。 111111098765432- 量子化 (ウ) 量子化- 符号化 サンプリング (エ) サンプリング 量子化コード化 2 1 0 (1) 空欄 (A)に入る語句を漢字1文字で答えなさい。 (2) 下線部「3つの手順」を正しく並べたものを下の(ア)~ (エ)より1つ選び、 記号で答えなさい。 (ア) 標本化 符号化 量子化 (イ) コード化 - 標本化 (時間) (3) 図のアナログデータをディジタル化したとき、 符号化されたデータはどのようになるか。 適切な 値を次の①~ ⑤ より一つ選び、記号で答えなさい。 なお、1データあたり4ビットで処理をす るものとする。 ①0100100010000100110111000 110010100100100 ②0010111110000100110111000110100,001000010 0010100011110100110111000110100000010100 0010100010000000110111001010100000100100 0010100010000100110111000110100000100100 (4) この波をディジタル化したデータを1データあたり6ビットで表記する場合、 図の横線は最大何本 になるか。その本数を答えなさい

未解決 回答数: 1