学年

質問の種類

数学 高校生

(1)の解説3行目~ 偶数であるものの総和で3と5が入っているのはなぜですか?

00000 基本例題 106 約数の個数と総和 (1) 360 の正の約数の個数と、 正の約数のうち偶数であるものの総和を求めよ。 (2) 12" の正の約数の個数が28個となるような自然数nを求めよ。 p.468 基本事項 (3) 56の倍数で、正の約数の個数が15個である自然数nを求めよ。 指針▷ 約数の個数総和に関する問題では,次のことを利用するとよい。 自然数Nの素因数分解がN=pq…..… となるとき 正の約数の個数は (a+1)(b+1)(c+1)...... EONORA (1+p+p²+.+pª)(1+g+q²+···+q°)(1+r+r³+ + ²)..... p. q. 7. ・は素数。 偶数は2の 2.gy...... (a≧1,6 ≧0,c≧0... ,, …. は奇数の素数 素数のうち、 (1) 上のNが2を素因数にもつとき, Nの正の約数のうち偶数であるものは i と表され, 1+ の部分がない。 その総和は (2+2²++2ª)(1+g+g²+ +g³)(1+r+r²+...+)... を利用し,の方程式を作る。 (2) ****** (3) 正の約数の個数 15を積で表し、 指数となる α, b, ...... の値を決めるとよい。 15 を積で表すと, 15 153であるから, nは1g - または-13-1 の形。 【CHART 約数の個数, 総和 素因数分解した式を利用 fgore の正の約数の個数は (a+1) (+1)(c+1) (p,q,r は素数 解答 (1) 360=232-5であるから,正の約数の個数は 7 (3+1)(2+1)(1+1)=4・3・2=24(個) また,正の約数のうち偶数であるものの総和は 積の法則を利用しても求 られる (p.309 参照)。 (2+22+2°)(1+3+32)(1+5)=14・13・6=1092 (2) 12"=(223)" =22".3" であるから 12" の正の約数が28個 (ab)"=a"b", (a")"=a であるための条件は (2n+1)(n+1)=28 のところを2mmと

未解決 回答数: 1
数学 高校生

(2)の数列{An+1+An}はーのところで、An+1+Anという数列はどこから来たのですか?An-1+An-2はどこへ行ったのですか?

[例題] 316 場合の数と漸化式 2辺の長さが1と2の長方形と1辺の長さが2の正方形の2種類のタイル がある。 nを自然数とし, 縦2, 横nの長方形の部屋をこれらのタイルで 過不足なく敷き詰めるときの並べ方の総数を Am で表す。 (1) n ≧3のとき, An を An-1, An-2 を用いて表せ。 (2) Ann を用いて表せ。 思考プロセス 具体的に考える 例題 307 Am を敷き詰める 最初にをおくと 最初に 最初に をおくと2 をおくと An+An-1=2 (An-1+An-2) --2- -2-- An-2A-1=-(An-1-2An-2) 3 ②より, 数列{An+1 + An} は初項 A2 + A1 = 4, 公比2の等比数列であるから n Action» n を含んだ場合の数は,最初の試行で場合に分けよ 解 (1) 左端に長辺を縦にした長方形を並べるとき 残り縦2, 横 (n-1)の部分の並べ方は A-1 通り (イ) 左端に長辺を横にした長方形を並べるとき 残り縦2, 横 (n-2)の部分の並べ方は A-2 通り (ウ) 左端に正方形を並べるとき 残り縦2, 横 (n-2)の部分の並べ方は A-2 通り (ア)~ (ウ)より An=An-1+2An-2 ① (2) ① を変形すると A-1 An+1+An=4.2-1 = 2+1 ③より, 数列{An+1-2Am} は初項 A2-2A1 = 1, 公比1の等比数列であるから An+1-2An=1,(-1)"^'=(−1)"-' ④ ⑤ より 3An=2+1-(-1)^-' よって An = 1/1/12 (2711-(-1)^-1) n-2 An-2 n-2 An-2 (東京大) ← 斜線部分 も 特性方程式 x2-x-2=0 より x=-1,2 より A = 1 ①日 より Ag = 3 [練習 316 先頭車両から順に1からnまでの番号の付いた両編成の列車がある。 ただ し≧2 とする。 各車両を赤色, 青色, 黄色のいずれか1色で塗るとき, 隣 り合った車両の少なくとも一方が赤色となるような色の塗り方は何通りか。 (京都大) p.570 問題316 6 章 18 化式と数学的帰納法 547

回答募集中 回答数: 0
数学 高校生

赤丸のところがわかりません 解説お願いします

46 CONNECT 数学ⅡI 188 問題の考え方 接点の座標を(x1, y) とおき、与えられた条 件からx を求めることを考える。 [別解 2つの接点を(x1, y'1), (x 27 y'2) とおき, それぞれの接点における接線の方程式を考 える。これらの方程式が(-1, 7) を通るこ とから, 2点を通る直線の方程式を考える。 接点の座標を(x1, y) とおく。 点 (x1,y1) は円x2+y2=25上にあるから x2+y2=25 ① 接点(x,y) における接線の方程式は x1x+y=25 この直線が点(-1,7) を通るから x1+7y1=25 ①,② から x を消去して整理すると P12-7y1+12=0 1 = 3,4 =3のとき x= -4, =4のとき x=3 これを解くと ②に代入して よって、2つの接点の座標は (-4, 3), (3, 4) したがって、2つの接点を通る直線の方程式は y-3= {x-(-4)} 4-3 3+(+4) すなわち x+7y=25 別解 A (x1,y1), B (x2, y2) とすると, A, Bにお ける接線の方程式は,それぞれ x1x+y1y=25, x2x+yzy=25 それぞれ点(-1, 7) を通るから x+7y1=25 -x2+7y2=25 281 ① ......25 ここで, 直線 x+7y=25 ・・・・・・ ③ を考えると, ①, ② から,直線③は2点A, B を通る直線で ある。 よって, 直線AB の方程式は -x+7y=25 189 ■問題の考え方■■ 接点の座標を(ⅹ1, 1) とおいて接線の方程式 を考える。また、この点が円周上の点である ことから条件式が導ける。 これを用いて x1, の値を求め,接線の方程式を求める。 接点の座標を(x1, y1) とする。 点 (x1, y1) は円x2+y2=50上にあるから x2+yj² = 50 接点 (x1, 1) における接線の方程式は xx+y=50 (1) y=0のとき, 接線②は直線xキョー ではない。 よって, 接線 ② が直線 x+y=1に平名 とき, 191 よって x1 = y1 ①,③からyを消去して整理すると これを解くと x=-5,5 ③に代入して 0で X1 y1 -1 =-5のとき =5のとき よって,接線の方程式 ② と接点の座標に ようになる。 x1 接線 x+y=-10, 接点 (-5, 接線 x+y=10, 接点 (5,5) (2) y=0のとき,接線②は直線+リニー 垂直ではない。 よって,接線②が直線7x+y=-2に るとき, y=0 で よって -7x₁=Y₁ 4 ①,④ から y を消去して整理すると これを解くと x1=-1,1 ④ に代入して Y1 (1) 求める円の半径を は円の中心 (30) に等しいから x=1のとき x=1のとき |- (-7)=-1) よって 求める円 すなわち (2) 中心が直線 y= (a, 34) とおける 直線 2x+y=0 に とすると 7. i=-7 よって,接線の方程式 ② と接点の座標は、 ようになる。 問題の考え 円が直線に接する 線と中心の距離に 接線 -x+7y=50, 接点 (-1,7) 接線 x-7y=50, 接点 (1, -7) ②に移る。 よって 求める (x-a)²+(2 とおける。 この (2-a)²+( Y 190 円の中心 C (1, 2) と点P(4,3)を通る直 CPの傾きは2=2=1/23 4-1 求める接線は CP に垂直で,点 (4,3)を通る その方程式は y-3=-3(x-4) すなわち 3x+y-15=0 別解円(x-1)+(y-2)=10...... ① , 向に -1, y 軸方向に2だけ平行移動すると ① は円x2+y2 = 10 この平行移動により、円 (31) に移る。 点 (31) における円②の接線の方程式は 3x+y=10 求める接線は, ③ をx軸方向に1, y軸方向に だけ平行移動したもので, その方程式は 3(x-1)+(y-2)=10 すなわち 3.x+y-15=0 整理すると これを解いて したがって, 上の点43)は 192■問 円と直線の 方程式を を考える。 (x-1)² + [x² + y² y=m ②①に (m² + この2次方 D 4 D > 0 と m²_ D=0 と m². D<0 と m' m2 が したが- m m

回答募集中 回答数: 0