学年

質問の種類

数学 高校生

[2]-1<軸<3を軸<0としたのですが、不正解ですか

定数 は以 基本 例題125 2次方程式の解と数の大小 (1) 195 00000 2次方程式 x2-2(a+1)x+3a=0が, -1≦x≦3の範囲に異なる2つの実数解を もつような定数 αの値の範囲を求めよ。 [類 東北大 ] 基本 123 124 重要 127 指針 p.192, 194 で学習した放物線とx軸の共有点の位置の関係は, そのまま 2次方程式の解 と数の大小の問題に適用することができる。 すなわち,f(x)=x2-2(a+1)x+3a として 2次方程式f(x)=0が-1≦x≦3で異なる2つの実数解をもつ 放物線y=f(x) がx軸の1≦x≦3の部分と、異なる2点で交わる したがって D>0, -1<軸<3, f(-10(3)≧0で解決。 解答 3章 CHART 2次方程式の解と数々の大小 グラフ利用 D,軸,f(k) に着目 13 3 2次不等式 この方程式の判別式をDとし,f(x)=x2-2(a+1)x+3a とす る。方程式 f(x)=0が-1≦x≦3の範囲に異なる2つの実数 解をもつための条件は,y=f(x) のグラフがx軸の-1≦x≦3 の部分と、異なる2点で交わることである。 したがって,次の [1]~[4] が同時に成り立つ。 C -1<軸 <3 ya [1] D> 0 [2] -1<軸<3 [3]) f(-1)≥0 D [4] f(3)≥0-( [1] = {-(a+1)-1・3a=a-a+1=(a-2/21)2+2/27 よって, D>0は常に成り立つ。 ...... (*) [2] 軸は直線x=α+1 で, 軸について -1<α+1<3 すなわち -2<a<2: [3] f(-1)≧0から (−1)-2(a+1)・(-1)+3a≧0 ① 3 ゆえに 5a+30 すなわち a≧- [4] f(3) 0 から 32-2 (a+1) ・3+3a≧0 ゆえに -3a+3≧0 すなわち a≦1 33 ①,②③の共通範囲を求めて Oa+1 3 X -3 -2 3 1 2 a 5 - -≤a≤1 注意 [1]の(*)のように,αの値に関係なく、常に成り立つ条件もある。

未解決 回答数: 1
数学 高校生

どうして、方程式が実数解を持つようなkの値を求めるために、複素数の相等という解法を用いるのですか?

68 2 重要 例題 43 虚数を係数とする2次方程式 000 の方程式 (1+i)x2+(k+i)x+3+3ki = 0 が実数解をもつように の値を定めよ。 また、 その実数解を求めよ。 CHART 解答 SOLUTION 2次方程式の解の判別 判別式は係数が実数のときに限る。 MOITULO 実物 D≧0 から求めようとするのは完全な誤り (下の INFORMATION 参照)。 実数解をαとすると (1+i)ω2+(k+i)a+3+3ki = 0 基本 この左辺を a+bi (a, b は実数) の形に変形すれば, 複素数の相等により a=0, 6=0 ←α, kの連立方程式が得られる。 方程式の実数解をα とすると (1+i)a2+(k+i)a+3+3ki=0 整理して (a2+ka+3)+(a2+α+3k)i=0 α,kは実数であるから, a2+ka+3,a2+α+3k も実数。 (k-1)a-3(k-1)=0 (k-1)(a-3)=0 よって a2+ka+3=0 ...... ① α2+α+3k=0 ...... ② ①② から ゆえに よって k=1 または α=3 [1] k=1 のとき ! なぜ (S-)&+n)e=1-e-s x=α EXERCISES A 33 次の2 を代入する。 ◆a+bi = 0 の形に整 (1) 2 (3) 342 次の (1) (3) 35③ (1) ■この断り書きは重B 363 ◆ 複素数の相等。 ◆ α2 を消去。 infk を消去すると α-22-9=0 が得られ 1037 ①,② はともに2+α+3=0 となる。 因数定理 (p.83 基本事項 を利用すれば解くこと きる。 c1 0>(S- これを満たす実数 αは存在しないから,不適。 ◆D=12-4・1・3=-11 03 [2] α=3 のとき ① ② はともに 12+3k=0 となる。 ゆえに k=-4 >0 ①:32+3k+3=0 103 ②:32+3+3k=0 [1], [2] から, 求めるんの値は 実数解は k=-4 0> x=3 INFORMATION 2次方程式 ax2+bx+c=0 の解を判別式 D=62-4ac の符号によって判別できる のはa,b,c が実数のときに限る。 例えば, a=i, b=1,c=0 のとき 62-4ac=1>0 であるが, 方程式 ix²+x=0の解 ■はx=0, iであり,異なる2つの実数解をもたない (p.81 補足参照)。 H

未解決 回答数: 1
数学 高校生

質問は写真にかいてあります

3a=0 ②が が虚数解をもっ 基本 41 重要例 43 虚数を係数とする 2次方程式 00000 xの方程式 (1+i)x2+(k+i)x+3+3ki = 0 が実数解をもつように, 実数k の値を定めよ。 また、 その実数解を求めよ。 CHART & SOLUTION 2次方程式の解の判別 判別式は係数が実数のときに限る D≧0 から求めようとするのは完全な誤り (下の INFORMATION 参照)。 実数解をα とすると (1 + i) o' + (k+i)a+3+3ki = 0 この左辺を a+bi (a, b は実数) の形に変形すれば、 複素数の相等により 0 a=0,b=0 ← α, kの連立方程式が得られる。 基本 38 2章 9 解答 方程式の実数解をα とすると 整理して (1+i)a2+(k+i)a+3+3ki=0 (Q2+ka+3)+(α2+α+3k)i=0 x=α を代入する。 ←a+bi=0 の形に整理。 α, kは実数であるから, a+ka+3, 2 + α+3k も実数。この断り書きは重要。 ①よって 複素数の相等。 a2+ka+3=0 ① どうし Q2+α+3k=0 ...... ② から (k-1)α-3(k-1)=0 ( のか ① 分かりません (k-1)(a-3)=0 k=1 または α=3 [1] k=1のとき ① ② はともに α2+α+3=0 となる。 これを満たす実数αは存在しないから、不適。 [2] α=3 のとき ① ② はともに 12+3k=0 となる。 ゆえに k=-4 [[1], [2] から, 求めるkの値は 実数解は k=-4 x=3 INFORMATION ← α を消去。 infk を消去すると 03-2α²-9=0 が得られ, 因数定理 (p.87 基本事項 21 ) を利用すれば解くことがで きる。 6=-47 ←D=12-4:1.3=-110 a²+9+3k38: ②:32+3+3k=0~ ①:32+3k+3=0 a=3~4とでたけど 2次方程式の解と判別式 管に-4はないのか →万かりみん 2次方程式 ax2+bx+c=0 の解を判別式 D=62-4ac の符号によって判別できる のは a, b, c が実数のときに限る。 例えば, a=i, b=1,c=0 のとき 62-4ac=1>0 であるが, 方程式 ix²+x=0 の解 はx=0, i であり,異なる2つの実数解をもたない (p.85 STEP UP 参照)。 PRACTICE 430 xの方程式 (1+i)x2+(k-i)x-(k-1+2=0 を定め

未解決 回答数: 0
数学 高校生

数2の質問です! 47の(2)の3行目はなぜ a+b ab ということが分かるんですか?? 分かりやすく教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

80 基本 例題 47 2次方程式の作成 00000 (1) 2次方程式+3x+4=0 の2つの解をα β とするとき、α、Bを解 とする2次方程式を1つ作れ。 (2) ab とする。 2次方程式+αx+b=0の2つの解の和と積が、2次 方程式+bx+α=0 の2つの解である。 このとき、定数a, bの値を求 めよ。 CHART & SOLUTION p.73 基本事項 3基本44 2次方程式の2つの解の関係 解と係数の関係を書き出す (1) 2数 2次方程式の1つは を解とする x²-(a²+ẞ²)x+a²ẞ²=0 和 積 (2)2つの2次方程式の解と係数の関係を書き出し, a,bの関係式を導く。 解答 (1) 解と係数の関係により よって α+β=-3, aβ=4 (-3)2-2.4 +B2=(α+B)2-2aß= =1 α2β2=(aβ)2=42=16 ゆえに、求める2次方程式の1つは x2-x+16=0 (2) 2次方程式 x2+ax+b=0の解をα, β とすると,解と 係数の関係により a+β=-a... ①, aβ=b... ② 2次方程式 x2+bx+α = 0 の解が α+ β, αβ であるから, 解と係数の関係により (α+B)+αß=-b, (a+β)aß=a ① ② を代入して -a+b=-b... ③, -ab=a... ④ ④から a+ab=0 すなわち よって α = 0 または b=-1 α(1+b)=0 α, β は2次方程式 +3x+4=0 の2つの 2数α2, β2 の和。 2数2, B2の積。 2つの解の和と積。 上の4つの式 (赤字) らα, βを消去。 [1] a=0 のとき ③から 6=0 [2] 6=-1 のとき ③ から α=-2 これは a<bを満たす。 [1] [2] から a=-2,b=-1 これは a<bを満たさない。 ← ③ から a=26 条件を確認する。 MOITANS

未解決 回答数: 1
数学 高校生

解答の2行目です。 なぜx>0なんですか?

例題 188 指数方程式の解の個数[2] 思考プロセス xについての方程式 4+ (a+1)2x+1+a+7=0 が異なる2つの正の解を もつような定数aの値の範囲を求めよ。 ReAction 文字を置き換えたときは、その文字のとり得る値の範囲を考えよ IA例題 76 4+ (a+1)2x+1 +α+ 7 = 0 が t=2* とおく 異なる2つの正の解をもつ t2+2(a+1)t+α+7 = 0 が どのような解をもつか? 対応を考える 1つのtの値に1つのxの値が対応 例題187 との違い・・・f(t) =αの形にすると, 式が複雑になることに注意。 | 4+ (a + 1)2x+1 +α+ 7 = 0 … ① とおく。 182 例題 2x = t とおくと, x>0より t>1であり, ① は t° + 2(a + 1)t +α + 7 = 0 ... ② 底を2にそろえ,2^ = t とおく。 平t=2x ここで, t = 2x を満たすx は, t > 1 である tの値1つに 対して x>0であるxの値1つが存在する。 よって, xの方程式① が異なる2つの正の解をもつのは, tの2次方程式 ②が1より大きい異なる2つの解をもつ ときである。 y=f(t) noirA YA f(t) = t° + 2(a+1)t + α +7 とおくと, (a+1) IA 109 y=f(t) のグラフがt軸と t>1の範 2次方程式の解と係数の 関係 (1) α+β = -2(a+1) 囲で2点で交わるのは,次の [1]~[3] を満たすときである。 01 D> 0 [1] f(t) = 0 の判別式をDとすると 3の場 2=(a+1)-(a+7)=q+a-6 4 a+α-6>0 より 平 (a+3)(a-2) > 0 よって α < - 3,2 <a [2] y=f(t)の軸が t>1の部分にある。 y=f(t) の軸は t = -(a+1) であるから -(a+1)> 1 (4) よってa<-2 [3] f(1) > 0 であるから f (1) = 3a+10 > 0 10 よって a> 3 t aβ = a +7 を利用して 判別式 D > 0 (α-1)+(β-1) > 0 (a-1)(B-1)>0 からαの値の範囲を求め てもよい。 ②を t2+2t+7=α (2t-1) と分離して,y=ピ+2t+7 とy=α(-2t-1) が t> 1 で異なる2つの共 有点をもつようなαの値 の範囲を求めてもよい。 ③~⑤ より 求めるαの値の範囲は 10 <a<-3 3 10 -2 3-3 a

未解決 回答数: 1