学年

質問の種類

物理 高校生

交流発電機の原理 交流発電機が回転し続けるために加える外力の仕事率が抵抗での消費電力と保存するのは何故なのでしょうか? 誘導起電力は仕事はしないのですか?教えてください。

7/1029 7/29 10 交流発電機の原理 電磁誘導の骨格、出題 次の文中の空欄 ①〜13を埋めよ。 ただし①と⑧はイロのどちらかを その他は数式で記入せよ。文中の物理量は MKSA単位系で表す。 }の中から選び、 交流発電機の原理を考えてみよう。 図のように一様な磁界 (磁束密度B) の中に面積Sの 長方形 abcdの一巻きコイルを置き, 磁界に直交する軸のまわりに一定の角速度で回転さ せる。 コイルを貫く磁束のは周期的に変化する。 コイルがabを上にし,その作る面が磁界の 向きに垂直なときに時刻を0とし,かつこのときに磁界が面abcdを貫いている向きを破 束が正となる面の向きとすれば,=)となる。時間⊿tの間における磁束の変化 とするとき、コイルに生じる誘導起電力は, cd a b向きを電流の正の向きと LT, V=1 )/4t=30 であり、コイルの両端 pq に抵抗Rを接続して回路を形成 すると,図の状態で電流は (イ)ab, (ロb→a} の方向に流れる。 コイルの抵抗が無視でき るとすると、このときの電流I )であり,抵抗で消費される電力Pは,P ) となる。 次に回路を流れる電流が磁界から受ける力とコイルの回転に要する仕事を考えよう。 図の ように磁界の向きを方向, 磁界とコイルの回転軸に垂直な方向を方向, 座標原点を回転 軸にとる。 図の状態で,コイルの一部ab (長さ)が磁界から受ける力の大きさは電流Iを用 いて (ロ)下向き}となる。一方,図のコ であり,その方向は方向を{(イ)上向き, イルの回転からaまでの長さをとし, コイルの一部abの位置をx-y座標で表すと (土,日)=(8), }, またその速度は(フェ, by) = (),( たがってコイルの一部 ab が磁界から受ける力にさからって等速回転するために必要な仕事 )} となる。 し は単位時間あたりP=)となる。コイルの一部cdについても上と同様の議論がで またad, bcで受ける力はのまわりの回転運動を生じさせない。したがってコイル全 体で必要な仕事は単位時間あたり 2P' となり, 式を整理すれば電力Pと一致することがわか る。 N 4 d T a R B b B ◎電磁誘導 B ◎電磁誘導 亜(t) 閉曲線 IV ↓ C ~ ・回路程式 の向きを設定 I -(右手系) → の学 Vem (~ファラデー・ノイマンの法則) PR(t) = Pex(t) エネルギー保存 -46-

回答募集中 回答数: 0
情報 大学生・専門学校生・社会人

パソコン得意な方、至急お願い致します。 Q3が分からないです。 I17セルに出席番号が偶数で女子に該当したらそのまま国語の点数を反映するよう入力したつもりなのですが、全て0になってしまいます。とこが間違ってますか? ※画像荒くてすみません

遊ゴシック 11 AA 折り返して全体を表示する 標準 EB [貼り付け] BIU- 2 クリップボード フォント セルを結合して中央揃え 配置 +%⁹ 2 数値 117 A A fx =IF(AND((MOD (ROW(B17),2)=0),E17="女"),$F17,0) B C D F G H 0 1 2 3 10 11 12345678911 12 13 条件付きテーブルとしてセルの 書式設定スタイル 下の表の成績表データから、次の Q1 ~Q3の集計を行い、 結果の数値もしくは結果を計算する数式を G8:G10 に記入せよ。 以下のどちらの方法でもよい。 ・表の1列目より右側を使い、 集計用の列を適宜作った上で、最終的な結果を別途求める ・G8からG10セルにSUMPRODUCT 関数を用いた数式を入力し、元のデータから一気に求める。 Q1:A班 の男子の人数は? Q2: 数学か英語で50点未満の点数を取っている人数は? Q3: 出席番号が偶数の女子の国語の平均点 スタイル B H 挿入 削除 書式 セル WE A 2 並べ フィル J K L M N 出席番号 氏名 班 性別 国語 数学 H 英語 3 H Q3 17 4 海老原梢 C 19 6 宮本 茉莉 A 123 10 高原 C 25 12 笹森 歩美 C 27 14 山崎 凛子 A 29 16 深井 心美 B (31) 18 大井 B 33 20 谷口 絢子 B 35 22 竹本 紗季 B 37 24 長谷川 五月 C 39 26 内田 紗綾子 B 43 30 堀井 美奈 C 女女女女女女女女女女女女 63 48 63 64 18 32 55 38 65 10 64 18 30 0 59 77 40 195 44 27 77 46 35 80 41 51 70 85 17 55 71 62 68 62 26 57 32 61 000000001 44 45

回答募集中 回答数: 0
数学 高校生

ここの問題が全然わかりません…良かったら教えてください…😭

座標平面上において, 点を座標で表し、 図形を方程式で表すことを学んだ。 ここでは、このことを図形の性質の証明に利用することを考える。 考察 △ABC の辺BCの中点をMとすると 3-1 AB+ AC = 2 (AM2+BM2) 2) k² 2 が成り立つことを,どのようにしたら証明できるだろうか。 真さん: 辺 AB の長さを 2 点 A, B間の距離と 14 Leve 5 みて, 座標を利用して考えられないかな。 悠さん: 右のような三角形ABC に対して座標 軸をどのように設定したらよいのかな。 B M C 10 座標を利用して考えると,次のように証明できる。 点Mが原点,辺BCがx軸上になるよ y (ab) A(a,b) うに座標軸を設定すると, △ABCの頂 点 A, B, C の座標は, それぞれ A(a, b), B(-c, 0),C(c, 0) 0=(1+-+- 5 とおくことができる。 このとき # AB2 + AC2 DB(-c, 0) M(0,0) C(c, 0) = ={(a+c)+62}+{(a-c)+62} (a,d) = 2(a²+b²+c²) Ac 2(AM²+BM²) = 2 {(a² + b²)+c²} = 2(a²+b² + c²) したがって AB2 + AC2 = 2 (AM2+BM2) #問15 上の説明では, どのような工夫をして座標軸を設定しているか。 頂点 C の座標をA(a, b), B(c, d), C(e, f) とおいた場合の証明を想定 説明せよ。 図形の性質を証明するには、座標を用いて次のようにするとよい。 1 座標軸を適当に設定し、 図形の関係を数式で表す。 2 得られた数式を用いて計算する。 3 計算結果を図形的に解釈する。 1 賀

回答募集中 回答数: 0
情報:IT 高校生

この問題の解き方がわかりません。教えてほしいです!お願いします

問5. 次の表は,ある商店の販売シミュレーションである。 次の条件から,今年度目標金額を達成するために必要な 目標数を求めたい。 表計算ソフトのデータ分析機能を実 行した場合,図のパラメータに設定する組み合わせとし て適切なものを選び, 記号で答えなさい。 条件 ・E4 には次の式を入力し, E6 までコピーする。 =C4/C$7 ・C13 には次の式を入力し, C15 までコピーする。 =B$9*E4 5・D13 には次の式を入力し, D15 までコピーする。 =B13*C13 16行目の「合計」は,各列の合計を求める。 今年度の目標金額合計は、昨年度の金額合計の25% 増しとする。 1 3 商品名 4 商品 A B C D E 2 昨年度データ 単価 数量 金額 割合 400 1,000 400,000 50% 5 商品B 500 600 300,000 30%| 6 商品 750 400 300,000 20% 7 合計 2,000 1,000,000 8 9 目標数 0 10 11 今年度目標 11 今年度目標 12 商品名 単価 数量 金額 13 商品 400 0 14 商品B 500 15 商品 750 0 16 合計 01 実行後の例 12 商品名 単価 数量 金額 13 商品 400 14 商品B 1,250 500 750 500,000 375,000 15 商品 750 500 375,000 16 合計 2,500 1,250,000 パラメータ設定 数式入力セル: (a) ア.(a) $D$16 イ. (a) $B$9 ウ. (a)$D$16 (b)1250000 (c) $B$9 目標値 : (b) (b)1250000 (c) $D$16 変化させるセル: (c) (b)1000000*1.25 (c) $B$9 実行 閉じる

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

確率統計の問題です。かなり難問で詳しく解説いただけると幸いです。

問5次のようなパズルのような問題がある. 問題を簡単にするために1年は365日とする (閏年は考えない). ある工場では人の工員を雇うことにする が,このうちの1人でも誕生日の人がいればその日は休みに, 1人も誕生日の人がいなければ働き、その日は 人数と同じn (単位) の利益を得るものとする。このとき,この工場の1年間の利益は働いた日数 xn にな る.例えばたまたま全員が同じ誕生日の場合は働いた日数=364 なので 364n の年間利益を得る. n人の工員をランダムに雇うとき, すなわち人それぞれの工員の誕生日は独立で一様分布に従うときこの年 間利益は確率変数になるが,その期待値を f(n) とする. この f(n) を最大にする n を求めよ. この問題は一見かなり難しいが以下の設問に沿って解答することにより f(n) を最大にする n とその時の f (n) の値を求めよ. (1) n 人の工員を雇うとき,確率変数 S を1人も誕生日の人がいない日数とするとき f(n) を S (やその期待 値, 分散など) を用いて表せ. (2) i=1,2,...,365を日にちを表すパラメータとする. 確率変数 X を次のように定める 1日に1人も誕生日の人がいなかった場合 Xi = 0日の誕生日の人がいた場合 このときP(X = 1) を求めよ. (3) (2) の設定で S を X を用いて表せ.また E[S] を求めよ. (4) 以上を用いて f(n) を具体的に表せ. (5) (4) で求めた f(n) より f(n+1)-f(n) を考えることで f (n) が最大になる n を求め, f(n) の最大値 (の 近似値)を与えよ.

回答募集中 回答数: 0