学年

質問の種類

数学 高校生

練習31番が分かりません😭 例題のような円の式yの二乗が残ってなくてこの後どうしたらいいか分かりません💦 教えてください🙇🙇

第3章 図形と方程式 5 イメージ 8 例題 Link 座標を用いて点Pの軌跡を求める手順は,次のようになる。 1 条件を満たす点Pの座標を (x, y) として, P に関する条件を x,yの式で表し,この方程式の表す図形が何かを調べる。 2 逆に,1で求めた図形上のすべての点Pが, 与えられた条件 を満たすことを確かめる。 原点からの距離と, 点A(3,0) からの距離の比が 2:1 である 点Pの軌跡を求めよ。 解答点Pの座標を (x, y) とする。 y Pに関する条件は OP(x, y) 10 10 OP: AP=2:1 A 0 3 x これより 2AP= OP すなわち 4AP2 = OP2 15 AP2=(x-3)2+y^, OP2 = x2+y^ を代入すると 4{(x-3)2+y^}=x2+y2 整理すると x2-8x+y+12=0 すなわち (x-4)2+y2=22 したがって,点Pは円 (x-4)2+y2=22上にある。 逆に,この円上のすべての点P(x, y) は,条件を満たす。 よって, 求める軌跡は,点 (40) を中心とする半径2の円である。 200 練習 点A(-3, 0) からの距離と, 点B ( 2, 0) からの距離の比が 3:2であ 31 る点Pの軌跡を求めよ。 補足 一般に,点Aからの距離と,点Bからの距離 の比が min である点Pの軌跡は,m≠n の A -mn B とき円になる。 この円をアポロニウスの円 という。この円は, 線分AB を min に内分す m. 25 25 る点と外分する点を直径の両端とする円である中

回答募集中 回答数: 0
数学 高校生

(3)の解説で 「ここで、~」以降のところがわからないので教えて欲しいです!!

第3章 47 軌跡(V) mを実数とする.ry平面上の2直線 76 基礎問 基礎問 とは、入試 問題を言い この「基礎 まとめてあり について,次の問いに答えよ. 98 出題される げ 教科書 ■ 。 特に、 5/8 ■アできる mx-y=0.① +m x+my-2m-2=0 ......②2 (1) ①,②はmの値にかかわらず,それぞれ定点 A,Bを通る。 A,Bの座標を求めよ. ○ (2) ① ②は直交することを示せ. (3) ①②の交点の軌跡を求めよ. 一つのテー ーマは原 やすくな 精講 (1) 「mの値にかかわらず」 とあるので,「mについて整理」して mについての恒等式と考えます. (37) (2) ②が 「y」 の形にできません. (36) ことはないので(注), (0, 2)は含まれない. よって、 求める軌跡は O-8 円 (x-1)+(y-122 から, 点 (02)を除いたもの. 注 一般に,y=mx+n 型直線は, y 軸と平行な直線は表せません. それは,yの頭に文字がないので,m,nにどんな数値を代入しても 77 必ず残って,r=kの形にできないからです。 逆に,xの頭には文 字がついているので,m=0 を代入すれば,y=nという形にでき, 軸に平行な直線を表すことができます。 45 の要領で①,②の交点を求めてみると 参考 2 (1+m) 2m(1+m) x= 1+m² 1+m²,y= となり,まともにmを消去しようとすると容易ではなく, 除外点を見つける こともタイヘンです. もしも誘導がなければ次のような解答ができます. こ aisons れが普通の解答です. x=0 のとき,①よりm=¥で割りたいの (3) ①②の交点の座標を求めて, 45 のマネをするとかなり大変です したがって,(1),(2)を利用することを考えます。このとき、4 IIIを忘れてはいけません. IC で≠0. r=0 ②に代入して y² 2y -2=0 で場合分け I IC 解 答 :.x'+y2-2y-2x=0 .. (x-1)+(y-1)²=2 YA 2 (1)の値にかかわらずmx-y=0が成りたつとき, x=y=0 A(0, 0) ②より (y-2)m+(x-2)=0 だからy-2=0、x=0mについて整理 .. B(2, 2) 次に, x=0 のとき,①より,y=0 0 これを②に代入すると,m=-1 となり実数が存在するので 点 (0, 0) は適する. 以上のことより, ① ②の交点の軌跡は円 (x-1)+(y-1)²=2 から点 (0, 2) を除いたもの. (2) m・1+(-1)・m=0 だから, aia2+bib2=0 36 ポイント ①,②は直交する. より, ∠APB=90° (3)(1),(2)より ① ② の交点をPとすると ① 1 ② ある円周上にある. その際, 除外点に注意する 定点を通る2直線が直交しているとき, その交点は, y 2 よって、円周角と中心角の関係よりPは2点A, B よって, (x-1)^2+(y-1)²=2 また,AB=2√2 より 半径は2 Bを直径の両端とする円周上にあるこの円の中 心は ABの中点で (11) (1泊) 演習問題 47 0 A 2x ここで,①はy軸と一致することはなく、 ②は直線 y=2 と一致する tを実数とする. ry 平面上の2直線 l : tx-y=t, m:x+ty=2t+1 について, 次の問いに答えよ. (1) tの値にかかわらず, 1, mはそれぞれ, 定点 A, B を通る. A,Bの座標を求めよ. (2), mの交点Pの軌跡を求めよ.

回答募集中 回答数: 0
数学 高校生

数2の質問です! 123の(3)を教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

第3章 図形と方程式 2つの円の交点を通る図形 テーマ 55 2つの円の交点を通る図形 2つの円x2+y²-6x4y+12=0 ・・・ ①, x2+y²-2x-2y=0 について、次の問いに答えよ。 (1) 2つの円 ①. ② は2点で交わることを示せ。 56 (2) 2つの円①, ② の2つの交点と点 (4, 0) を通る円の方程式を求めよ。 (1)半径がそれぞれR, (R>r) である2つの円の中心間の距離をdとすると 2つの円が2点で交わるR-r<d<R+r (2) 方程式 (x2+y²-6x-4y+12)+k(x+y-2x-2y)=0の表す図形は k-1のとき2つの円の2つの交点を通る円 k=-1のとき 2つの円の2つの交点を通る直線 解答 (1) ① を変形すると (x-3)+(y-2)=1 よって, 円 ① の中心は点 (3, 2), 半径は 1である。 (x-1)+(y-1)=2 ② を変形すると よって, 円 ② の中心は点 (1, 1), 半径は √2である。 2つの円 ①,②の中心間の距離は d=√(3-1)+(2-1)'=√5 ② 半径√2 図形 ③点 (40) を通るとき これを③に代入して整理すると これが求める円の方程式である。 応用 2 (1,1) ① 半径1 (3,2) DALLA ゆえに √2-1<d<√2+1 したがって、 2つの円 ①, ② は2点で交わる。 終 (2) kを定数として, 方程式 (x2+y²-6x-4y+12)+k(x2+y²-2x-2y)=0 ③ を考える。 (1) により、2つの円 ①,②は2点で交わり、③は2つの円 ①,②の 2つの交点を通る図形を表す。 1 4+8k=0> よって k=-- x2+y²-10x-6y+24= 0 2 ①, x2+y2=4 (2 123 2つの円x2+y²-8x-4y+4=0 ついて,次の問いに答えよ。 2つの円 ①,②は2点で交わることを示せ。 2つの円①② の2つの交点と点 (1,1)を通る円の方程式を求めよ。 2つの円 ①,②の2つの交点を通る直線の方程式を求めよ。 28 基本と演習テーマ 数学ⅡI 122 (1) 円+y=18は中 心が原点, 半径が3√2の 円である。 2つの円の中心間の距離d は d=√12+(-7) =√50=5√2 2つの円が外接するとき 求める円の半径を 5√2=r+3√2 とすると これを解くと=2√2 よって, 求める円の方程式は (x-1)²+(y-(-7))^²=(√2)^ すなわち (x-1)²+(y+7)²=8 (2) x2+y²-12.x +4y+390 を変形すると (x-6)^+(y+2)=1 110 ...... 114 これは,中心が点 -7 123 (1) ① を変形すると (x-4)²+(y-2)² 44) (x-3)²+(y-2)² = 6² すなわち (x-3)^+(y-2)^²=36 (6, -2), 半径が1の円 を表す。( 2つの円の中心間の距離 dは 前 d=√(3-6)^2+(2-(-2))=√25=5 2つの円が内接するとき 求める円の半径を とすると, 図より 5=y-1 これを解くとv=6 よって, 求める円の方程式は y1 2 O =16 よって, 円 ① の中 ② 半径2 心は点 (4,2), 半径 は4である。 円 ② の中心は 点 (0, 0), 半径は2である。 円 ①,②の中心間の距離は + x -2 6 O ① 半径4 d. (4,2) x 形 ③点 (1,1)を通るとき 月①,②の2つの交点を図形を表 -6-2k=0 x2+y2+4x+2y-80 これが求める円の方程式である。 (3) ③ において, k=1 とすると -8x-4y+8= 2x+y20 124 (1) 求める軌跡は, 直線y=1からの距離 が2で、 直線y=1と 平行な2直線である。 よって 直線y=3, 直線y=-1 (2) 求める軌跡は,線分 ABの垂直二等分線で ある。 よって pold=√42+22=√2=2√5 4−2<d<4+2であるから, 円 ①,②は2点 で交わる。 (2) kを定数として, 方程式 よってk=3 これを③に代入して整理すると (x2+y2-8x-4y+4)+k(x²+y²-4) = 0 ...... (3) を考える。 (1) により, 円 ①, ② は2点で交わり, ③は すなわち これが求める直線の方程式である。 直線 x=2 (3) 求める軌跡は, *+(y-2)=16 点 (1,2)を中心とする 半径3の円である P (2) AP¹=x-(-3)= BP=(x-3)² + AP' + BP=20で (x+3)²+y = 整理すると したがって、点 逆に、この円上 て, AP3 + BP- よって 求め 原点を (3) A.P'=x- BP2=(x- AP2-BP2- 0 AB (1,2) (x+ 整理すると したがって 逆にこ いて, A よって, 126PC とする。 Pに関す AE 125 点Pの座標を(x,y)とする (1) AP2=(x-2)^2+y2, BP2=x2+(y-6° AP=BP より, AP2=BP2であるから (x-2)2+y2=x2+(y-6)²2 これよ すなわ AP2= BP2= B = す し あ 3 整理すると x-3y+8=0 したがって, 点Pは直線x-3y+8= 0 上にあ る。 逆に,この直線上のすべての点P(x,y) につ いて, AP BP が成り立つ。 よって, 求める軌跡は 直線x-3y+8=1|

回答募集中 回答数: 0
数学 高校生

この下の例題で、各円の方程式を引いたらそれぞれの交点を通るのは分かるのですが、「ここで」の後がいまいちピンと来ません。丁寧に解説お願いしたいです

90 第3章 図形と方程式 コメント 結果的にいえば、 2つの円の方程式を x² + y²-5=0, x²+y²−6x+2y+5=0__····· とすると円の交点を通る直線は①②であっさり求められるわけです。 最初聞いたときは, 「えっ、なんで?」 と思ったものですが,すでに説明した ように, 「①②」 と 「①-②, ②」の同値関係を考えることで説明できるわ けですね. 「この「同値」の考え方の威力を感じていただくために,次のような問題を紹 介しておきましょう. 例題 平面上に3つの円があり,どの2つの円も異なる2点で交わっているも のとする.各2円の異なる2つの交点を結ぶ3つの直線は1点で交わるこ るので、 とを示せ . 設定がとても一般的ですので,解こうにも何から手を つけてよいのかわからないような問題ですね. ところが上回 図形と方程式の考え方を用いれば、 ほとんど計算をする ことなく証明できてしまうのです. まず3つの円を一般形 (x2+y^+lx+my+n=0の 形)で表した方程式を ① ② ③とします. すると, ①と②の2つの交点を通 る直線は「①-②」,②と③の2つの交点を通る直線は 「②③」, ①と③の2 つの交点を通る直線は 「①③」 と表せます. 「ここで 一致する 2-3813 ①ONOS 1359 1-3=(1-2)+(2-3) 1-= del なのですから, ①②, ②-③」 と 「①-③, ② - ③」は同値です.つまり、 それぞれの直線の交点は一致するわけですから、3直線は1点で交わります。 し

回答募集中 回答数: 0