学年

質問の種類

生物 高校生

リードα 基礎例題15 (3)②が解説を読んだのですがよくわかりませんでした。未発達の時期に非自己の抗原が侵入すると、その抗原に反応するリンパ球が排除され、免疫寛容(自己成分に対し免疫反応が生じない状態)が起こるから、成体になっても免疫反応が起こらないとあるのですが、未発... 続きを読む

基本例題 15 皮膚移植 解説動画 黒い皮膚のマウス (A系統) と白い皮膚のマウス (B系統) を用意し、皮 膚移植に関する次の実験1~3を行った。 第3章 [実験1] A系統のマウスに, A系統の別のマウスの皮膚片を移植した。 また, B 系統のマウスにB系統の別のマウスの皮膚片を移植した。 どちらも移植された 皮膚片は生着した。 [実験2] A系統のマウスに, B 系統のマウスの皮膚片を移植すると, 移植された 皮膚片は小さく縮み, 10日目で脱落した。 [実験3] 実験2で使用したA系統のマウスに, 再びB系統のマウスの皮膚片を 移植したところ, 移植された皮膚片は6日後に脱落した。 (1) 次の文章の( )に入る適切な語句を答えよ。 A系統のマウスに移植されたB系統マウスの皮膚片は非自己と認識され, NK細胞や(a) 細胞が,移植された皮膚片を直接攻撃する。 そのため, 攻 撃された皮膚片は生着できなくなる。 これを(b)反応とよぶ。 (2)実験3で,移植された皮膚片が実験2より速く脱落したのはなぜか。 次の(ア)~ (ウ)のうちから適切なものを1つ選べ。 (ア) 実験2の移植によって, 体内で自己免疫にはたらく細胞ができたから。 (イ) 実験2の移植によって, A系統のマウスにおいて免疫寛容が起こらなかっ たから。 (ウ) 実験2の移植によって, B系統のマウスの皮膚片に対する記憶細胞が体内 に残っていたから。 (3) 次の条件で皮膚移植を行った場合, 移植された皮膚片はどのようになると考え られるか。 皮膚片の脱落が起こる場合は,予想される日数も示して答えよ。 ① 皮膚移植を受けたことのないA系統マウスに, あらかじめ胸腺を除去した B系統のマウスの皮膚片を移植する。 免疫系が未発達な生まれた直後のA系統のマウスにB系統のマウスの組織 を移植し,その後, 成長したA系統のマウスにB系統のマウスの皮膚片を 移植する。 脂 (1) 自己とは異なる系統の皮膚などが移植されると, NK細胞による自然免疫や, キ ラーT細胞が攻撃する細胞性免疫による拒絶反応が起こる。 (3) ① 胸腺はT細胞の成熟に関係するが, 胸腺を除去した個体の皮膚片を移植しても 移植した個体の免疫には影響しない。 ② 免疫系が未発達な時期に非自己の抗原が侵入すると,その抗原に反応するリンパ 球が排除され, 免疫寛容が起こるので, 成体になってもその抗原に対して免疫 応が起こらない。 暦 (1) (a) キラーT (b) 拒絶 (2) ウ (3) ① 10日間で脱落 ② 生着

回答募集中 回答数: 0
数学 高校生

直線束の考え方がよく分かりません 87ページの内容を説明して頂きたいです😭 その上で、例題13も説明して頂きたいです

束の考え方 1つの共有点をもつような2つの直線 ax+by+c=0 ax+by+c=0 ...... ② 87 があるとします.ここで、①の式に②の式をを倍して足した新しい式 (ax+by+c)+k(a'x + b'y + c') = 0 を作ってみましょう.これもやはり直線の方程式になります。 ③の式から②の 式のk倍を引き算すれば① の式が作れるのですから, 「①と②」の式と「②と ③」 の式は同値です。つまり、図形的に見れば、 ①と②の2直線の交点と②と ③の2直線の交点は一致することになります。 一致する * このことより, ③は(kの値によらず) ①と②の交点を通る直線である ということがいえます. ③において, kの値をいろ いろと変化させてできる直線の集まりは一点で結わ れた直線の束に見えるので,直線束と呼ばれていま す. これを利用すると, 2直線の交点を通る直線を 実際に交点を求めることなく扱うことができるので とても便利です。 コメント んの値が動くと 直線が動く 直線束 第3章 この束には、②の直線は含まれません,これは, 「同値関係」を考えてみれ ばわかります. もし③が② に一致するならば, 「③と②の共有点の集合」は直 線 ②全体になってしまいますが,「①と②の共有点の集合」 は1点ですので、 同値であることに矛盾してしまうのです. 一方, ②の直線上にない点を (p,g) とすると,ap + b'y + c'≠0 ですので,③が(p, q) を通るようなkの 値を決めることができます (③ に (p, g) を代入したものはんの1次方程式にな るので,それを解けばいいのです) つまり,③は 「①と②の交点を通る ②以 「外のすべての直線」 を表せることがわかります.

回答募集中 回答数: 0
現代文 高校生

2枚目P22ページの例えば、から何言ってるのかわかりません。 現代文得意な方詳しく説明願います

がした 可能 いわ * いや生全体に 二〇一七年度 第 次の文章を読んで、後の設問に答えよ。 与えられた困難を人間の力で解決しようとして営まれるテクノロジーには、問題を自ら作り出し、それをまた新たな技術の開発 によって解決しようとするというかたちで自己展開していく傾向が、本質的に宿っているように私には思われる。 科学技術によっ て産み落とされた環境破壊が、 それを取り戻すために、新たな技術を要請するといった事例は、およそ枚挙にいとまないし、感染 防止のためのワクチンに対してウィルスがタイセイを備えるようになり、新たな開発を強いられるといったことは、毎冬のよう に耳にする話である。東日本大震災の直後稼働を停止した浜岡原発に対して、中部電力が海抜二二メートルの防波堤を築くことに よって、「安全審査」を受けようとしているというニュースに接したときも、同じ思いがリフレインするとともに、こうした展開に はたして終わりがあるのだろうかという気がした。 技術開発の展開が無限に続くとは、たしかにいい切れない。 次のステージにな にが起こるのか、当の専門家自身が予測不可能なのだから、先のことは誰にも見えないというべきだろう。けれども科学技術の展 開には、人間の営みでありながら、有無をいわせず人間をどこまでも牽引していく不気味なところがある。いったいそれはなんで あり、世界と人間とのどういった関係に由来するのだろうか。 けんいん 医療技術の発展は、たとえば不妊という状態を、技術的克服の課題とみなし、人工受精という技術を開発してきた。その一つ体 外授精の場合、受精卵着床の確率を上げるために、排卵誘発剤を用い複数の卵子を採取し受精させたうえで子宮内に戻す、といっ たことが行なわれてきたが、これによって多胎妊娠の可能性も高くなった。 多胎妊娠は、母胎へのフィジカルな影響や出産後の経 済的なことなど、さまざまな負担を患者に強いるため、現在は子宮内に戻す受精卵の数を制限するようになっている。だが、この 制限によっても多胎の「リスク」は、自然妊娠の二倍と、なお完全にコントロールできたわけではないし、複数の受精卵からの選択、 また選択されなかった「もの」の「処理」などの問題は、依然として残る。 いろう いずれにせよ、こうした問題に関わる是非の判断は、技術そのものによって解決できる次元には属していない。体外授精に比し より身近に起こっている延命措置の問題。 たとえば胃瘻などは、マスコミもとりあげ関心を惹くようになったが、もはや自ら食 事をとれなくなった老人に対して、胃に穴をあけるまでしなくても、鼻からチューブを通して直接栄養を胃に流し込むことは、か なり普通に行なわれている。このような措置が、ほんのその一部でしかない延命に関する技術の進展は、以前なら死んでいたはず の人間の生命をキュウサイし、多数の療養型医療施設を生み出すに到っている。 しかしながら老齢の人間の生命をできるだけ長く引き伸ばすということは、可能性としては現代の医療技術から出てくるが、現 実化すべきかどうかとなると、その判断は別なカテゴリーに属す。「できる」ということが、そのまま「すべき」にならないのは、 核爆弾の技術をもつことが、その使用を是認することにならないのと一般である。 テクネー (TEX(VM) である技術は、ドイツ語 Kunst の語源が示す通り、「できること(können)」の世界に属すものであって、「すべきこと (sollen)」とは区別されねばならない。 テクノロジーは、本質的に「一定の条件が与えられたときに、それに応じた結果が生ずる」という知識の集合体である。すなわ ち、「どうすればできるのか」についての知識、ハウ・トゥーの知識だといってよい。それは、結果として出てくるものが望ましい かどうかに関する知識、それを統御する目的に関する知識ではないし、またそれとは無縁でなければならない。その限りのところ それが単なる道具としてニュートラルなものに留まりえない理由もある。 では、テクノロジーは、ニュートラルな道具だと、いえなくもない。ところが、こうして「すべきこと」から離れているところに、 ほうてき テクノロジーは、実行の可能性を示すところまで人間を導くだけで、そこに行為者としての人間を放擲するのであり、放擲され た人間は、かつてはなしえなかったがゆえに、問われることもなかった問題に、しかも決断せざるをえない行為者として直面する。 妊婦の血液検査によって胎児の染色体異常を発見する技術には、そのまま妊娠を続けるべきか、中絶すべきかという判断の是非 を決めることはできないが、その技術と出会い行使した妊婦は、いずれかを選び取らざるをえない。いわゆる「新型出生前診断」 3限目 問題文

回答募集中 回答数: 0
化学 大学生・専門学校生・社会人

(3)(4)がわかりません

で一定に保ったまま kPaった。 合気体に気火花をさせたのち、容器のを 27°すると. とき 生成した水の % がしてい 容器はCkPa となった る。(H100.R=8.31×10 1.01×1051760mm K・mol). A:(70.4.0 30 (エ) 97.3730 (ア) 35 36 (エ) 70 (オ) (ア) 18 24 (エ) 30 95 324 物質の二 60. 連結球 気体の燃焼〉 に最も適 るものを,それぞれ下から選べ。 片側を閉したいガラス管の内部を水で満たし銀だめの中で倒立させた。 この水銀柱の異空部水蒸気で飽和させると、1気において, 水銀柱の高さ は 730mm であった。 270における水の飽和圧は (AkPaである。 27℃で、水素が圧力30 Paで詰められた耐性容 各積2,酸素が圧力 で詰められた耐圧容 3.0L) カコックスで連結されている。温度を 容積 を開けての気体をすると、気体の全圧 33 べてなくなった)ところでピストンを止めた (状態II)。その後,さらにピストンへの圧 力を下げた状態Ⅲ)。 飽和水蒸気圧は図2に示すように変化し, 60℃においては 0.20 × 10 Paである。 容器内の液体の体積は無視できるものとして,(1)~(4)に答えよ。 ただし、水素は水に溶解しないものとする。 (1),(3)の答えは有効数字2桁で記せ。 (R=8.3×10 Pa・L/(K・mol)) ピストン 飽和水蒸気圧 [×10Pa] 1.00- 0.90- 0.80- 0.70- 0.60- 0.50- 0.40- 0.30- 0.20- 0.10- 0.00- 0 10 20 30 40 50 60 70 80 90100 温度 [℃] 図2 気体、 液体 状態 I 状態ⅡI 状態Ⅲ 図1 DO 25 350 (オ)6775 ( 100 [17田大 改] 結球と体の圧力> 気体は を扱い 17°C 7°C 連結部分およ 1.0,C=1, N-140=16) AR=8.31×10° Pa・L/(m・K), 飽和水蒸気圧 とする。 また、 (1) 状態 I における容器内の体積を求めよ。 思考 (2) 状態 Iにおける容器内の体積を固定したまま、温度を上げた。 容器内の水がすべて 水蒸気に変化する温度 (液体の水がすべてなくなる温度)は,次の(a)~(e) のどの温度範 囲に含まれるか。 最も適当なものを一つ選べ。 (a) 60~70°C (b) 70-80°C (c) 80-90°C (3) 状態Ⅱにおける容器内の体積を求めよ。 (d)90~100℃ (e) 100℃以上 (4) 状態Ⅰから状態Ⅲへの変化によって, 容器内の圧力Pと体積Vの関係はどのよう に変化するか。 最も適当な図を次の (a)~(e)から一つ選べ。 天体の水の ものとす (a) V に示して で各にメタン32 いて、コックをしたれ には空気 コック A 容器 B (b) + II (c) (d) (e) Ⅱ 20% 11.52 れた。 30.0(L) に保ったを開き、 時間が経 容器内の人 燃焼 A, 器 P →P [19 防衛医大 〕 にした。この容器内の [Pa〕 を求めよ。 生成した 存在 のとする。 さらに を開いたまま 063 〈理想気体と実在気体〉 「このとき,①容 内を 在する液体の水の物質量 [mol] を求めよ。 に存在する水蒸気 [mo 量 容器B内を17 よび ②容器内に存 保っ 以下の文中の空欄 に入る当を語を記せ。 62. 〈混合気体の体積〉 [14 京都府医大 改〕 実在気体の理想体からのを指して れる。ここではhp (Parは体積 P の値がよく用 PT) はK)であ 物質量(mol 図1に示すような体積と温度を自由に変えることのできるピストン付き容器に 0.15molの水素と0.20molの水を入れ, 温度を60℃に保ち、ピストンに0.50×105 Pa の圧力をかけた。このとき,水は一部液体であった(状態Ⅰ)。 温度を一定に保ったまま, ピストンへの圧力をゆっくり下げ, 容器内の水がすべて水蒸気になった (液体の水がす とかが一定の条件 Z値の力依存 多くの実在気体では、Pを 俺から大きく と、乙はからんするさらにPを大き やがて するの値が いる 大きくしたときと するの エ ウ が現れるた が強 れるためで 名古

回答募集中 回答数: 0
物理 高校生

(2)について質問です 2枚目が解答なのですが、オレンジの線を引いてるところが分かりません。なぜmは同じになるといいきれるのですか??

(カ) 354 マイケルソン干渉計■ 図のように,光源 Sを出た波長の単色光が, Sから距離 Ls にある 半透鏡Hにより上方への反射光と右方への透過光の光源S 2つに分けられる。 反射光は,Hから距離 LAに固 定された鏡Aで反射して同じ経路をもどり,一部が Hを透過してHから距離 LD 離れた検出器Dに到達 する。 一方, Sを出てHを右方へ透過した光は, 鏡 D [兵庫県大 改] 347 鏡ATE LA 鏡 B 半透鏡H -LS- -LB- AL AL LD 検出器 D Bで反射して同じ経路をもどり、一部がHで反射してDに到達する。 これら2つの光が 干渉する。 初めのHからBまでの距離は LB (LB>LA) で, Bは左右に動かすことができ る。Hの厚さは無視でき, 鏡および半透鏡において光の位相は変わらないものとする。 X Bを少しずつHに近づけるとDで検出される光の強さは単調に増加し, ALだけ動い たとき,最大となった。 逆に, Bを少しずつHから遠ざけると光の強さは単調に減少 し,初めの位置から 4L だけ動いたとき最小となった。 波長をALで表せ。 Bを初めの位置にもどし, 波長を入から少しずつ大きくしていく。 Dで検出される 光の強さは単調に増加し,+4のとき最大となった。 LB-L』を入とで表せ。 次に,光の波長を入にもどし, Bを初めの位置から動かして, Hからの距離がL』 に 等しくなるまで少しずつ動かした。 この間のDで検出される光の強さを観測すると, 250 回最小値をとることがわかった。 このとき,(2)における入と 4入の比を求め よ。 入 [16 新潟大 改] ヒント 353(2)隣りあう2つのスリットを通る光の経路差= (回折後の経路差) (入射前の経路差) 354 (3)250 回目の最小値をとったときの,HとBの距離はLa+24Lであり,最小値は 44L ご とに現れる。

回答募集中 回答数: 0
物理 高校生

2個目のAで急に点Aがでてきた理由がわからないので教えてください

V 干渉 135 & 図を見ると山と山が重なっていない点にも強め合いの線が描かれていますね。 強め合いの位置というのはいつも山と山が重なってじっとしているわけでは ないんだよ。時間を追ってみると谷と谷が重なることもあり、 振幅2Aでバタ バタ激しく動いている点なんだ。 右の図で細い線は少し時間がたったときの 波面。 山の重なりはP′へ移っているね。 そ のうちPには谷と谷がさしかかることにな コしてるわけだ。 る。強め合いの線に沿って見ていくとデコボ 強め合いの線 P 山 S2を中心と して広がる 一方、弱め合いの線上での変位はどこも 0 で水面はじっとしているんだよ。 Sを中心と して広がる 波紋が広がるイメージ をもって見てみよう Q 条件式の方は考えれば考えるほど分からな くなります。 確かに=5,2=3のような位置では,波源と同じ変位だか ら,波源が山のとき, 山と山が重なり合います。 でも,=53入,2=3.3 (や はり差は21で強め合い)となると,いったいどう説明できるんですか? まず, 波源 S1, S2が山を出したときを考えよう。 この2つの山がやがて点Pで出合うわけではない ね。Pに近いS2 から出た山の方が先にPに着いて しまうからね。 S2 から出た山が出合う相手, それは SとPを結ぶ線上でPA=PS2となる点 A にいる 波だ。 つまり点 A に山がいることが強め合う条件だ。 SとAが同時に山となるためには SA=m入 ほら、 SAこそ じゃないか。 一方, 弱め合いは波源が山のときAに谷がいれば よい。 S2 の山とAの谷がやがてPで出合って打ち 消すことになる。 S, が山, A が谷となるためには 入 山 S1 強め合い P S2 これらがPで重なる 弱め合い P 山 S.A が 1/12 あるいは 123+m入であればいいね。 S1 S₂ Q なるほど。すると, 波源が逆位相のときは,Sが山を出したとき S2は谷を 出すと………そうか! 距離差=miならAは山でS2 からの谷と打ち消し合 うし,距離差= (m+1/2)入ならAは谷で強め合うというわけですね。

回答募集中 回答数: 0
数学 中学生

全てわからない

(2) 第2学 14. ABCD に次の条件を加えると,それぞれどんな四角形になるか答えなさい。 D 【思考・判断・表現】(3点×3点)A (1)AC=BD (2) AC=BD, AC⊥BD (3) AC⊥BD G ひし形 B 15. 右の図1で, △ABCの辺 AB 上に点Pをとり、点Pと頂点Cを 結ぶ。∠APC の二等分線をひき,辺 ACとの交点をQとすると, PQ // BC となった。 【思考・判断・表現】 (2点×2) (1) BPC の大きさをx, ∠AQPの大きさをとするとき, PCQの大きさをxとy を用いて表しなさい。 (2)図2は図1に点Qを通り,辺 AB に平行な直線をひき,辺BC との交点を R, 線分PCとの交点をSとし, 頂点と点 S, 点Pと 点R を結んだものである。 ▲BRSと面積の等しい三角形をすべて 答えなさい。 図1 B 図2 P 92 8(2) 12 =y-(90- is gov <PcQ=y-a △PBCより xctata=180 29 =180-2 a = 1800 た,それ =2C 2 △PRS ASCQ P BR 1a=5 10-5=5 6=5 16.大小2つのサイコロを同時に投げるとき,大きいサイコロの出た目の数を小さいサイコロの出 10-5=5 た目の数を とする。 このとき,次の確率を求めなさい。 2-6=5 4-6=5 a=2 a=1 ただし,どの目が出ることも同様に確からしいとする。 【思考・判断・表現】(3点×2) X (1) 2a-b=5 となる確率 36=12 a=4 b (2) 2直線 y=xとy=2x-1が交わる確率 8-6=5 a (1 b=3 TE 8-3=5 a=36-6=5 b=1 17. 次のア~エの中から正しいものだけを選び, 記号で答えなさい。 【思考・判断・表現】(4点) 6-1=5 ア3人でじゃんけんをするとき,1人だけが勝つ場合とあいこになる場合では,起こりやすさは同じである サイコロを60回投げると,1の目は必ず10回出る 2枚のコインを同時に投げたとき,起こりうる場合は「2枚とも表」, 「2枚とも裏」,「1枚は表で1枚は裏」 の全部で3通りとなり,どのことがらが起こることも同様に確からしい ぐあ エ赤球2個と白球3個と青球1個の6個が入っている箱の中から、同時に2個の球を取り出すとき, 2個とも白球になる確率が最も大きい ちょ は1人

回答募集中 回答数: 0
数学 中学生

この問題全部教えてください

10. 右の図のように,∠C=90°の直角三角形ABC で, ∠Bの二等分線と 辺ACとの交点をDとする。 点D から辺 AB へ垂線をひき、辺ABとの 交点をEとすると, BE=BC となる。 次の問に答えなさい。 NCB (対応順) E 【思考・判断・表現】(3点×2) (1)このことを証明するとき、どの三角形とどの三角形の合同をいえば よいですか。 B 'C 2つの角 (2) (1) を証明するときに使う三角形の合同条件を答えなさい。 11. 右の図のように,二等辺三角形ABC の長さの等しい辺 AB, ACの 中点をそれぞれM,Nとし, BN と CMとの交点をDとすると, △DBCは 二等辺三角形になる。このことを以下のように証明した。 」にあてはまるものを答えなさい。 【思考・判断・表現】 (2点×6) (証明) MBC と ANCB において, B 仮定から, AB=AC よって, MB=- 1/2AB NC=12121 MB= BC は共通 ア イ AB=AC で, 二等辺三角形の底角は等しいから, MBC=ウ ① ② ③ より [ I ]がそれぞれ等しいから, AMBC=ANCB したがって, <MCB= ∠ オ カ が等しいから, ADBCは二等辺三角形である。 12. 右の図の□ABCD で, BAD=78°,∠BEF=151°のとき, DFE の大きさを求めなさい。 【思考・判断・表現】 (3点) 13. ABCD の AB, DCの中点をそれぞれ M, Nとすれば, 四角形 MBND は平行四辺形になる。このことを証明しなさい。 【思考・判断・表現】 (6点) M D N A 月終) て 1180 97 83 180 QSC 1 2 178 180 151 151 29 C BE M N B

回答募集中 回答数: 0
生物 高校生

⑵の問題なのですがどのように考えて古いものから順に並べれますか?

100 表は、ある地方の6つの社寺(ア)~(カ)において森林構造を調べた結果である。 これを 93 日本の植生の遷移に関する次の文章を読み、 以下の問いに もとに, 社寺(ア)~(カ)の森林の成立年代を古いものから順に並べたい。 ただし, 最も古 いものは(カ)であることがわかっている。なお,これらの社寺の森林は,それぞれの社 寺の成立以前に形成されていたものとする。 階層 高木層 低木層 草本層 高木層 アリドオシ マンリョウ アオキ アカメガシワ タブノキ スダジイ タブノキ クロマツ タブノキ 植物名 スダジイ 社寺 (ア) 4 2 2 1 イウ (イ) 2 3 1 (ウ) 4 (エ) 2 4 (オ) 5 1 1 1 (カ) 5 1 1 ヤブコウジ 1 ジャノヒゲ 1 1 キチジョウソウ ヤブラン 1 1 1 2 1 1 3 1 1 1 1 1 1 2 4 2 2 1 1 ミズヒキ ※表中の数字は被度 を表している。被 度とは各植物の地 上部が地表をおお う割合のことで, この表では次の基 準で分けている。 1:1~20% 2:21~40% 3:41~60% 4:61~80% 5:81~100% (1) ある地方とはどこであると推定されるか。最も適当なものを次の①~⑥から選べ。 ① 北海道東北部針葉② 北海道南西部 ③ 秋田県 ④ 山形県 ⑤ 愛知県 ⑥ 沖縄県 亜熱帯雨林 夏緑 (2) 次の文章中の空欄に入る語や植物名を,あとの解答群からそれぞれ選べ。 下線部を考えるには 盗」などの「a」は 林から林への」をたどればよい。 (g) がせ林床では芽ばえが生育できない。これに 対し、「やなどのの芽ばえは(e)が林床でも生育で きるので次第に変わっていく。林から林への~(C)のおもな原因は 湿度と温度条件である。 新しいものから見ると(オ)の林ができ、その下に生 ■ が成長し,さらに(g)との混交林ができる。その えうる 後_d林は枯死して林となり,どうしの競争の結果と プロマツ a 121 の混交林,そして林の林になると推定される。したがって, 社寺の森林を古いものから順に並べると(k) の順になる。 [(a)~(c), (e),(f),(i), (j)の解答群] ① 陰樹 ⑥ 低く カ、エ、ウ、ア、イ・オ ② 極相 ③ 遷移 相観 ⑤ 高く ⑦ 光補償点 ⑧優占種 陽樹 ⑩ 林床

回答募集中 回答数: 0