学年

質問の種類

数学 高校生

(3)の考え方が分かりません!解説お願いします🙇🏻‍♀️

第4問 (選択問題)(配点20) 太郎さんと花子さんは、 数列の漸化式に関する問題について話している。 問題数列{an}は を満たしている。 このとき, an を求めよ。 また, Sm = |a|+a2+as|+...... + anl とする。 S" を求めよ。 太郎: 一般項an を求めるには, 漸化式 an+1=-2a+6 を an+1 - α = p (an-α)の 形に変形するといいね。 花子:そうだね。 このことを使ってα を求めることができるね。 一 100 20.0 20.0 0.0 0.0 20.0 |α1=5, an+1=-2an+6 (n=1,2,3,...) isht e vona o trae ni kaz8.0 (1) 数列{an}の一般項は OCALOOLAG となる。 I an= の解答群 On-1 ア + ①n オ a=-2a+6 30=6 X=2 anti-2=-2an-2 ②n+1 太郎 : S はどうすれば求められるかな。 花子: 具体的に数列の項を求めてみると, a2=-4,43=14,44=22だね。 (第4回13) 一般項の式から考えると,数列{an}の偶数番目の項は負の数奇数番目の 項は正の数となるね。 太郎: 偶数番目までの項の和と, 奇数番目までの項の和というように場合分け をして考えたらどうかな。 3P 3 Acc an-2=-3-1-217-) gh=3(-21h +2 (数学ⅡI・数学B 第4問は次ページに続く。) (2) nが偶数のときを考える。 S=カキ である。 nが偶数のとき, n=2mmは自然数)と表すことができるから S2m=|a1|+|az|+|a3++α2m-1|+|12m | =|a1|+|a3|+|as|+......+|a2m-1| と変形できる。 このとき となり となる。 a₁+as+as+...+ a2m-1=202 +|az|+|a4|+|a6|+......+|azm| = a₁+as+a5++a2m-1-(a₂+a₁+as++ a2m) e(k-1) a2+ax+a+.………+α2m = Za であるから a2k-1= k=1 ②24=②サシ S2m = a2k-11 ス クケ k=1 tz a2k = a2k ケ a+=592= 5-4414-2²3-7 26 19 k-1 a2k-1 ソ -1 + + コ - コ 3.(-2)24-2 + = 3-4k-1 + J 3(-2) こ -6 ( 2 (01 (数学ⅡⅠ・数学B 第4問は次ペ 3.4k-1

回答募集中 回答数: 0
数学 高校生

(3)が分かりません!四角で囲ったところの考え方を解説お願いします🙇🏻‍♀️

第4問 (選択問題)(配点20) 太郎さんと花子さんは、 数列の漸化式に関する問題について話している。 問題数列{an}は を満たしている。 このとき, an を求めよ。 また, Sm = |a|+a2+as|+...... + anl とする。 S" を求めよ。 太郎: 一般項an を求めるには, 漸化式 an+1=-2a+6 を an+1 - α = p (an-α)の 形に変形するといいね。 花子:そうだね。 このことを使ってα を求めることができるね。 一 100 20.0 20.0 0.0 0.0 20.0 |α1=5, an+1=-2an+6 (n=1,2,3,...) isht e vona o trae ni kaz8.0 (1) 数列{an}の一般項は OCALOOLAG となる。 I an= の解答群 On-1 ア + ①n オ a=-2a+6 30=6 X=2 anti-2=-2an-2 ②n+1 太郎 : S はどうすれば求められるかな。 花子: 具体的に数列の項を求めてみると, a2=-4,43=14,44=22だね。 (第4回13) 一般項の式から考えると,数列{an}の偶数番目の項は負の数奇数番目の 項は正の数となるね。 太郎: 偶数番目までの項の和と, 奇数番目までの項の和というように場合分け をして考えたらどうかな。 3P 3 Acc an-2=-3-1-217-) gh=3(-21h +2 (数学ⅡI・数学B 第4問は次ページに続く。) (2) nが偶数のときを考える。 S=カキ である。 nが偶数のとき, n=2mmは自然数)と表すことができるから S2m=|a1|+|az|+|a3++α2m-1|+|12m | =|a1|+|a3|+|as|+......+|a2m-1| と変形できる。 このとき となり となる。 a₁+as+as+...+ a2m-1=202 +|az|+|a4|+|a6|+......+|azm| = a₁+as+a5++a2m-1-(a₂+a₁+as++ a2m) e(k-1) a2+ax+a+.………+α2m = Za であるから a2k-1= k=1 ②24=②サシ S2m = a2k-11 ス クケ k=1 tz a2k = a2k ケ a+=592= 5-4414-2²3-7 26 19 k-1 a2k-1 ソ -1 + + コ - コ 3.(-2)24-2 + = 3-4k-1 + J 3(-2) こ -6 ( 2 (01 (数学ⅡⅠ・数学B 第4問は次ペ 3.4k-1

回答募集中 回答数: 0
数学 高校生

(3)が分かりません!四角で囲ったところの考え方を解説お願いします🙇🏻‍♀️

第4問 (選択問題)(配点20) 太郎さんと花子さんは、 数列の漸化式に関する問題について話している。 問題数列{an}は を満たしている。 このとき, an を求めよ。 また, Sm = |a|+a2+as|+...... + anl とする。 S" を求めよ。 太郎: 一般項an を求めるには, 漸化式 an+1=-2a+6 を an+1 - α = p (an-α)の 形に変形するといいね。 花子:そうだね。 このことを使ってα を求めることができるね。 一 100 20.0 20.0 0.0 0.0 20.0 |α1=5, an+1=-2an+6 (n=1,2,3,...) isht e vona o trae ni kaz8.0 (1) 数列{an}の一般項は OCALOOLAG となる。 I an= の解答群 On-1 ア + ①n オ a=-2a+6 30=6 X=2 anti-2=-2an-2 ②n+1 太郎 : S はどうすれば求められるかな。 花子: 具体的に数列の項を求めてみると, a2=-4,43=14,44=22だね。 (第4回13) 一般項の式から考えると,数列{an}の偶数番目の項は負の数奇数番目の 項は正の数となるね。 太郎: 偶数番目までの項の和と, 奇数番目までの項の和というように場合分け をして考えたらどうかな。 3P 3 Acc an-2=-3-1-217-) gh=3(-21h +2 (数学ⅡI・数学B 第4問は次ページに続く。) (2) nが偶数のときを考える。 S=カキ である。 nが偶数のとき, n=2mmは自然数)と表すことができるから S2m=|a1|+|az|+|a3++α2m-1|+|12m | =|a1|+|a3|+|as|+......+|a2m-1| と変形できる。 このとき となり となる。 a₁+as+as+...+ a2m-1=202 +|az|+|a4|+|a6|+......+|azm| = a₁+as+a5++a2m-1-(a₂+a₁+as++ a2m) e(k-1) a2+ax+a+.………+α2m = Za であるから a2k-1= k=1 ②24=②サシ S2m = a2k-11 ス クケ k=1 tz a2k = a2k ケ a+=592= 5-4414-2²3-7 26 19 k-1 a2k-1 ソ -1 + + コ - コ 3.(-2)24-2 + = 3-4k-1 + J 3(-2) こ -6 ( 2 (01 (数学ⅡⅠ・数学B 第4問は次ペ 3.4k-1

回答募集中 回答数: 0
数学 高校生

四角で囲ったところの考え方が分かりません!解説お願いします🙇‍♀️

第4問 (選択問題)(配点20) 太郎さんと花子さんは、 数列の漸化式に関する問題について話している。 問題数列{an}は を満たしている。 このとき, an を求めよ。 また, Sm = |a|+a2+as|+...... + anl とする。 S" を求めよ。 太郎: 一般項an を求めるには, 漸化式 an+1=-2a+6 を an+1 - α = p (an-α)の 形に変形するといいね。 花子:そうだね。 このことを使ってα を求めることができるね。 一 100 20.0 20.0 0.0 0.0 20.0 |α1=5, an+1=-2an+6 (n=1,2,3,...) isht e vona o trae ni kaz8.0 (1) 数列{an}の一般項は OCALOOLAG となる。 I an= の解答群 On-1 ア + ①n オ a=-2a+6 30=6 X=2 anti-2=-2an-2 ②n+1 太郎 : S はどうすれば求められるかな。 花子: 具体的に数列の項を求めてみると, a2=-4,43=14,44=22だね。 (第4回13) 一般項の式から考えると,数列{an}の偶数番目の項は負の数奇数番目の 項は正の数となるね。 太郎: 偶数番目までの項の和と, 奇数番目までの項の和というように場合分け をして考えたらどうかな。 3P 3 Acc an-2=-3-1-217-) gh=3(-21h +2 (数学ⅡI・数学B 第4問は次ページに続く。) (2) nが偶数のときを考える。 S=カキ である。 nが偶数のとき, n=2mmは自然数)と表すことができるから S2m=|a1|+|az|+|a3++α2m-1|+|12m | =|a1|+|a3|+|as|+......+|a2m-1| と変形できる。 このとき となり となる。 a₁+as+as+...+ a2m-1=202 +|az|+|a4|+|a6|+......+|azm| = a₁+as+a5++a2m-1-(a₂+a₁+as++ a2m) e(k-1) a2+ax+a+.………+α2m = Za であるから a2k-1= k=1 ②24=②サシ S2m = a2k-11 ス クケ k=1 tz a2k = a2k ケ a+=592= 5-4414-2²3-7 26 19 k-1 a2k-1 ソ -1 + + コ - コ 3.(-2)24-2 + = 3-4k-1 + J 3(-2) こ -6 ( 2 (01 (数学ⅡⅠ・数学B 第4問は次ペ 3.4k-1

回答募集中 回答数: 0
数学 高校生

(3)が分かりません!解説の四角で線を引いたところの考え方を解説お願いします🙇‍♀️

第4問 (選択問題)(配点20) 太郎さんと花子さんは、 数列の漸化式に関する問題について話している。 問題数列{an}は を満たしている。 このとき, an を求めよ。 また, Sm = |a|+a2+as|+...... + anl とする。 S" を求めよ。 太郎: 一般項an を求めるには, 漸化式 an+1=-2a+6 を an+1 - α = p (an-α)の 形に変形するといいね。 花子:そうだね。 このことを使ってα を求めることができるね。 一 100 20.0 20.0 0.0 0.0 20.0 |α1=5, an+1=-2an+6 (n=1,2,3,...) isht e vona o trae ni kaz8.0 (1) 数列{an}の一般項は OCALOOLAG となる。 I an= の解答群 On-1 ア + ①n オ a=-2a+6 30=6 X=2 anti-2=-2an-2 ②n+1 太郎 : S はどうすれば求められるかな。 花子: 具体的に数列の項を求めてみると, a2=-4,43=14,44=22だね。 (第4回13) 一般項の式から考えると,数列{an}の偶数番目の項は負の数奇数番目の 項は正の数となるね。 太郎: 偶数番目までの項の和と, 奇数番目までの項の和というように場合分け をして考えたらどうかな。 3P 3 Acc an-2=-3-1-217-) gh=3(-21h +2 (数学ⅡI・数学B 第4問は次ページに続く。) (2) nが偶数のときを考える。 S=カキ である。 nが偶数のとき, n=2mmは自然数)と表すことができるから S2m=|a1|+|az|+|a3++α2m-1|+|12m | =|a1|+|a3|+|as|+......+|a2m-1| と変形できる。 このとき となり となる。 a₁+as+as+...+ a2m-1=202 +|az|+|a4|+|a6|+......+|azm| = a₁+as+a5++a2m-1-(a₂+a₁+as++ a2m) e(k-1) a2+ax+a+.………+α2m = Za であるから a2k-1= k=1 ②24=②サシ S2m = a2k-11 ス クケ k=1 tz a2k = a2k ケ a+=592= 5-4414-2²3-7 26 19 k-1 a2k-1 ソ -1 + + コ - コ 3.(-2)24-2 + = 3-4k-1 + J 3(-2) こ -6 ( 2 (01 (数学ⅡⅠ・数学B 第4問は次ペ 3.4k-1

回答募集中 回答数: 0
数学 高校生

数B 等差数列 下の写真の(2)について2点の質問があります ①赤マーカーの部分ですが、第3項はどうなるのでしょうか? ②今まで見てきたものは、一番最後がnのつくもので終わっていたのですが、この赤マーカー部分の列はnがつくものの先が書かれていると思います。nが最後に... 続きを読む

基本例題 88 調和数列とその一般項 (1) 調和数列 20, 15, 12, 10, の一般項 αn を求めよ。 (2) 初項が α, 第2項がbである調和数列がある。 この数列の第n項an を α, b で表せ。 p.514 基本事項 [5] 指針▷> 数列 {an}が調和数列 (a≠0)数列{1}が等差数列 調和数列は等差数列に直して考える。 (1) 各項の逆数をとると,{1 : 解答 (1) 20, 15,12,10, 1 1 1 1 20'15'12'10' 1 をnで表し、再びその逆数をとる。 an (2) 等差数列{}の初項が 数列②の初項は 一般項は 等差数列 まず初項と公差 (2) 条件から, 一般項は 20' 2/1+(n-1).. 公差は よって, 数列 ① の一般項 α は 1 1 1 b 1 1 an a この数列の初項は 1,公差は ****** 1 15 an= = 1 n+2 60 60 1 1 1 1 20'15'12'10' -+(n-1)² ② が等差数列となる。 1 1 20 60 2-1) a-b ab 1 1 b a an= (a−b)n-a+2b ab よって、 調和数列の一般項 α は ab (a-b)n-a+26 第2項が 1/18 公差は13 が調和数列であるから, ****** であるから, ********* 60 n+2 が等差数列となる。 a-b ab であるから, が等差数列となる。 1 a <bm= とする。 各項の逆数をとる。 <bnts-bn=d <bm=bi+(n-1) d 逆数をとる。 4= <bn+1-bk=d 1 各項の逆数をとる。 <b=b;+(n-1)d b 逆数をとる。 α=. = 1/ b 章 2等差数列 3章 12

回答募集中 回答数: 0