学年

質問の種類

数学 高校生

詳しく解説お願いします よろしくお願いします

の一般 の値に = () () [例題] 思考プロセス 8 二項定理の応用 (1) 11100 の十の位の数と一の位の数を求めよ。 (2) 2121400で割ったときの余りを求めよ。 式を分ける (1) 百の位以上の数をなるべく除いて考えたい。 (2400(20) で割り切れる部分を分ける。 明らかに 100で割り切れる部分を分ける。 11100 = (10+ 1)100 = (1+10) 100 = 100 Co + 100C1 ・ 10' + 100C2・102 + ... +100C100・10100 KOTE 2013 2121 = (20+1)^1 = (1+20)21 = 21Co+ 21C120' + 21C2・202+ … +21C21・2021 Action>> N” の下桁の値は、 二項定理を用いよ 解 (1) 11100 (10+ 1)100 = (1 +10) 100 = 練習 8 = 100Co1 + 100C110' + 100 C2102 + ・・・ + 100 C100 10100 ここで,r2 のとき 100 C 10 は 100の倍数であるから, 100 C2102 + ・・・ + 100 C100 1010 は 100の倍数である。 また 100 Col + 100C110' = 1 × 1 + 100 x 10 = 1001 したがって, 11100 の十の位の数は 0, 一の位の数は 1 (2) 2121 = (20+1)^1 = (1 +20)21 = 21Co1 + 21C120' + 21 C2202 + ・・・ + 21 C212021 ここで,r2のとき 21 C20 は 202=400 の倍数であ るから, 21 C2202 + ・・・ + 21 C212021 は 400の倍数である。 よって, 2121 を400で割ったときの余りは, ケア21 Co1 + 21 C120' を 400で割ったときの余りに等しい。 21 Col+ 21C120'=1×1+21×20 = 421 = 400 +21 したがって, 2121 を 400で割った余りは 21 Point... 整数 (a±1)" を α で割ったときの余り 21 (20+1), 19 (20-1) などのように, 整数a に対して (a +1) または (a-1)の 形で表される整数をn乗した整数 (a±1)" を α (0 ≦k≦n) で割ったときの余りは, 二項定理を用いて求めることができる。 (a+1)" = (1+a)" = nCo·1+nC₁ a¹ +nC₂·a²+ + ₂C₁ •a* + ··· +nCn • an (a-1)" = (−1+α)"="Co.(-1)"+C (-1)"-1α'+n C2(-1)" -2.² + ... 自然数nを用いて 11100=1+100C110'+100n と表すことができる。 +nCk(-1) "-kaw+..+nCma" 上の等式について,自の部分が α で割り切れることを利用すると (a±1)" 余り+α* で割り切れる部分) となるので、余り が求まる。 (1) 11" の百の位、十の位, 一の位の数を求めよ。 (2)311900で割ったときの余りを求めよ。 →p.37 問題8 27 1 1 多項式分数式の計算

回答募集中 回答数: 0
数学 高校生

多項式の除法です。 2xの2乗をX-3で割ることはできないから、-7Xの上に2Xじゃないのでしょうか??

15 10 20 25 5 15 20 5 10 3| 多項式の除法 これまでは, 多項式について,加法,減法,乗法を考えてきた。ここで は, 多項式の除法を考えてみよう。 .81 + =A 整数について,余りを考慮した除法を考えた。 多項式についても、余り を考慮した除法を考えることができる。 まず, 整数の除法を振り返ろう。 例えば,172を7で割ると商は 24, 余りは 4である。 このとき 172 = 7×24 + 4 ← 割る数 × 商 + 余り である。 同じような計算を多項式で行うこと を考えてみよう。 例8 注意 1節多項式の乗法・除法と分数式 問14 2x-1 x-32x²2-7x+5 2x² - 6x 24 7)172 ・(x-3) ×2x 140・・・ 32 ・7×20 多項式 A=2x²-7x+5, 多項式 B=x-3のとき, AをBで 割る計算は次のように考える。 -x+5 -x+3. (x-3) × (-1) 2 28・・・ 4 7x4 最後の行に現れた2は, 割る式x-3よりも次数が低いから, これ以上計算を続けることはできない。 このとき, AをBで割ったときの商は2x-1, 余りは2である という。 上の計算から、 次の式が成り立つことが分かる。 A =Bx (2x-1)+2 割式x+余り ① このような計算では,割る式も割られる式も, 文字xについて降べきの順に整 理しておくとよい。 多項式 3x²+2x+1を多項式3x-4で割り, 商と余りを求めよ。 また、例8にならって, 多項式3x²+2x+1 を ① の形に表せ。 13 1章 章 方程式・式と証明

回答募集中 回答数: 0