学年

質問の種類

数学 中学生

至急です! B1~B6の問題の答えがあっているのか確認して欲しいです。 また、2番の解き方が分からなかったので解説よろしくお願いします

中3数学 B1 積が195になる連続する2つの正の奇数を求めなさい。 2次方程式の利用 ② (x+1)(x+3)=195 x2+4x+3=195 x214x-192=0 B2 和と積がともに6である2つの数を求めなさい。 1192 (x+6)(x-12) -16 12 名前 B5 横がより5cm 長い長方形の厚紙がある。 この厚紙の4すみから1辺が2cmの正方形を切り取り、 直方体の容器をつくると, 容積が100cmになった。 長方形の厚紙の縦の長さを求めなさい。 B3 右の図のように,横が縦より2m長い長方形の土地に, 幅1mの道をつくり残った土地を花壇に すると、花壇の面積の合計が35㎡になった。 もとの長方形の土地の縦の長さを求めなさい。 17072x=x+2+x-1=35 x²-2x x²-1=35 32-36=96 B4 右の図のように、1辺が8cmの正方形ABCDの遊上頂点がある正方形 EFGHをつくると、そ の面積は40cmとなった。 AE>EBとして, AE の長さを求めなさい。 662-292224 8 -Most 2x²+14=0. x²-8x+12 (x-6)(x-2) A FC X- 64 D 2418-x (8=x) 8 40 E DC 8x-x 4x- B B-1 13,15 2x²-6-108:0 B-2 20x+1)(x-4) = (00 2 X-3x-54 74年 27-32-48 (x+6)(x-9) 16 B-3 6cm xc+5.2 B-4 B6 右の図は,AB=AC=8cm, ∠A=90° の直角二等辺三角形ABC である。 点PはAを出発し, 辺AB上をB まで動き, 点 QはPと同時にCを出発し, P と同じ速さで,辺CA上をAまで動く。 △APQの面積が5chになるときのAPの長さを求めなさい。 B-5 hom (43-15)(41-5)08 22 7-8-X 64-40 166+土2488-2÷2=5. 2 R ÷2=5 x-8×1100円 B-6 P 9cm 4116cm 4. Ax-3x²-51x8.7 54 0 10 2 3-4 8 76 4 x x 4

解決済み 回答数: 2
数学 高校生

マーカー部分では判別式を使って何を示しているのでしょうか?教えてください🙇‍♂️

例題 112 接線に関する軌跡 放物線 y=x2 上の異なる2点P (1,2), Q(g, q2) における接線をそれぞれ l1, とし,その交点をRとする。 l と l2 が直交するように2点P, Qが動くとき 点Rの軌跡を求めよ。 [類名城大〕 ←例題 108 &2の方程式から交点の座標 (x, y) を求めると,xとyはともに,gの式で表される。 文字 g を消去する したがって, 方針は そこで用いるのは 2直線が垂直←(傾きの積)=-1 185 3 18 答案 x軸に垂直な接線は考えられないから,lの傾きをm とすると,その方程式は y=(x-p) すなわち y=m(x-p)+p2 x2=m(x-p)+p これと y=x2 を連立して 整理すると x²-mx+mp-p2=0 この2次方程式が重解をもつから, 判別式をDとすると D=(-m)2-4(mp-p2)=m²-4mp+4p²=(m-2p)2 P(p, p²) Q(g,g')) li l2 10. x R D=0 から (m-2p)=0 よって m=2p したがって, l の方程式は y=2p(x-p)+p² $73b5 y=2px-p² (1) 同様にして,l2の方程式は y=2qx-q² ②2 交点Rの座標 (x, y) は, 連立方程式 ① ② の解である。 ①をに おき換える。 と yを消去して整理すると 2(p-g)x=(p+α)(カーg) x=p+q J 2 y=2p⋅ b + q = p² = pq == 2 pag であるから これを①に代入して li⊥lz から 2p2g=-1 1 よって y=pq=- 4 また,p, q は 2次方程式 t2-2xt- ...... ③ の判別式を D' とすると D' 4 D = (-x)²-1⋅(-1) = x²+1 4 参考 左の答案は 今までに学習した 知識のみを用いて 接線の方程式を求 めているが,後で 学習する微分法を 用いるとより簡 単に求めることが できる(第6章微 ③ の解である。分法を参照)。 よって D'> 0 逆の確認。 ゆえに、任意のxに対して実数p,q(p≠q)が存在する。 1 したがって, 求める軌跡は 直線 y= =-4

解決済み 回答数: 1