学年

質問の種類

物理 高校生

(6)浮力は使えないのでしょうか

124 2014 年度 物 II] つぎの文の に入れるべき数式を 図3-1のように, 大気圧P。 中に支持棒で天井に固定されたピストンに対し て,鉛直方向になめらかに動く断面積S の円筒容器が静止している。円筒容器 の中には1モルの単原子分子の理想気体 Aが閉じ込められており、その底には 質量 M の加熱器が取り付けられている。 床には底面積2S の円筒状の水槽が置 かれており、その中には密度の水が入っている。 円筒容器とピストンは断熱 材でできており,また円筒容器の壁の厚みと質量は無視できるものとする。理想 気体の気体定数を R,重力加速度の大きさをgとする。 はじめに図3-1のように,円筒容器の下面は水面からはなれた位置で静止し ている。このときのAの圧力は P1, 体積は V, 絶対温度は T, であった。 P」を (2) とな R, T,, V, で表すと (1) M をg, Po, P,, S で表すと る。 つぎに図3-2のように,Aに熱量Q をゆっくりと加えると円筒容器がんだ け降下し、その下面は水面と一致し Aの絶対温度は T2 になった。 ん を S, T.. T2, V, で表すと (3) となる。この過程でAの内部エネルギーの変化をん P1, Sで表すと (4) Aが外部にした仕事を Q で表すと (5) とな る。 さらに図3-3のように,Aに熱量Q をゆっくりと加えると円筒容器がんだ と け降下し,Aの圧力は P2, 絶対温度は T, になった。 P2 を P,, h, g, p で表す (6) となるので,この過程の圧力P を縦軸に、体積Vを横軸にとった P-V 図のグラフの傾きはg, S, p で表すと (7) となる。この過程でA 外部にした仕事をP, g, h, S, p で表すと (8) となる。

回答募集中 回答数: 0
数学 高校生

一番のx=って点ABの座標だと思うんですけど、2番で①が実数になるからと言っている意味がよく分かりません、交点をとるからという意味ですか?

●7 斜めの回転体 1 曲線 y=- IC >0) をCとする。 直線 y=x上の点Pにおいて直線y=xに直交する直線を考 える. この直線と曲線Cは2点 A, B で交わっているとする (2) 曲線と直線x+y=4で囲まれた部分を直線y=xの周りに1回転してできる回転体の体 (1) Oを原点(0,0)とし, OP=1とするとき, 線分AP の長さを†で表せ。 積を求めよ. 回転軸上に変数をとる 回転軸が斜めになっている場合であっても,回転 軸上に変数(目盛り)をとれば、座標軸が回転軸の場合と同様,体積を S's (1) dt で計算することができる。 ここで, S(t)は右図太線での回転体の 断面積である. 回転軸上に変数をとるとは,「回転軸上の定点(例題ではO) からの距離を変数で表す」ということで、例題ではこのような設定になって いるので難しく考える必要がない。 演習題のように変数をとる場合は注意が必 (演習題の解答のあとで解説する) 解答量 (1)Pは第1象限にあるので, OP=t のときP (津田塾大学) t t=b t=a 回転体の断面積S(t) t √2 このときにx+y=√2tだから,C:xy=1と連立し て」を消去すると, C (√2t-x)=1 :.x2-√2tx+1=0 x= √2t±√2t2-4 2 複号のマイナスの方をAとして t AP=√2 √2 √21-√2(12-2) 2 =√t-2 P t x+y=4 B XC V2 P (2) ①が実数になるので 212-40 すなわち√2 であり,また, 1:x+y=√2tx+y=4と一致するとき, t=2√2 である. よって, 求める体積 V は, 2√2 v=f2x· AP²dt= V= 2/2 ·AP²dt=√(t²-2) dt=r -13-2t 2√2 Cは直線 y=x に関して対称だ らPはABの中点になる. ={16/2-4√2- 2 √2-2√2 2 π

回答募集中 回答数: 0
物理 高校生

これの(7)なんですけど!なぜRは一定ってこの文から決めれるんですか?別に送電線を変えればRは変えれることないですか?

136 〈交流の送電〉 交流電圧が送電に広く用いられるのは, 変圧器によって交 ao 鉄心 流電圧を容易に上げ下げできるためである。 ここでは,電力 損失のない理想的な変圧器を考える。 図1のように, 鉄心に 2つのコイル (1次コイルの巻数がn, 2次コイルの巻数が n)を巻く。このとき, 1次コイルと2次コイルの間の相互イ ンダクタンスはMであった。 U1 b 11 112 1次コイル 図 1 2次コイル ⊿の変化するとして、次の設問に答えよ。 なお、設問(1)~(4)は n1, nz, M, ⊿t is ⊿の 時間 4tの間に1次コイルに流れる電流 in が ⊿i だけ変化したとき, 鉄心に生じる磁束が 中から必要な文字を用いて答えよ。 1次コイルに生じる誘導起電力の大きさを求めよ。 (2)2次コイルに生じる誘導起電力をv2とする。このときの比の大きさ n2 を用いて表せ。 〔A〕 V₂ [V] V2 をい V₁ (3) 2次コイルに生じる誘 導起電力 (端子 dを基準 とした端子 cの電位) v2 をMを含む式で表せ。 図 (4) 1次コイルの電流を 図2のように変化させた 2 10 5050 0 1 2 3 4 5 6 -5 t(s) S 10 0 1 2 3 4 5 6 7 t〔s] 図2 -15 図3 ときの時間変化のようすを図3に図示せよ。ただし,電流żの向きは,図1に示した 矢印の向きを正とし, M=5H (ヘンリー) であるとする。 図4のように,発電所 発電所 から送りだされた電圧 V1, 電流 L, 電力Pの交 流は,変圧器Aによって 電圧 V2,電流Izの交流 に変えられ,抵抗Rの送 電線で消費地近くの変圧 交流発電機 変電所 変電所 送電線 12 鉄心 鉄心 消費地 変圧器 A 抵抗 R V2 変圧器 B 抵抗 1次コイル 2次コイル 1次コイル 2次コイル 図 4 器Bに送られる。 送電線の終端の電圧は V3 である。 ただし, 電圧 V1, V2, V3, 電流 I, Iz は実効値である。また,ここで,電力は1周期についての平均の電力であり、1次側,2次 側ともに電圧と電流の実効値の積で表されるとする。 また, 変圧器 A, B はともに電力損失 のない理想的な変圧器である。 (5) 電圧 V3 を P, V2, R を用いて表せ。 (6)発電所から送りだされた電力Pと送電線の終端での電力P' の比,すなわち, e=- 送電効率という。送電効率e を P, Vz, R を用いて表せ。 送電効率を高くするためにはどうすればよいと考えられるか。簡潔に述べよ。 を P [九州工大 改〕

回答募集中 回答数: 0
物理 高校生

画像の問題の答えを教えてください!!

底面積がS[m²), 高さがL(m)の中空の円柱容器に物質を入れて水に浮かべ、浮力の 実験を行った。 以下, 円柱容器に入れた物質も含めて円柱とよぶ。 円柱の運動は鉛直方 向に限られるものとする。 水の密度は深さによらず一定で、円柱の運動にともなう水か らの抵抗, 水面の変化および円柱容器自身の質量は無視する。 ここで水の密度を Po [kg/m3], 重力加速度の大きさをg[m/s2] として次の問いに答えよ。 水面 d Po 図 1 S Po 図2 Po P1 図3 (1) 円柱の下部に密度が1〔kg/m²(ただし, Pipo) の物質を高さ L [m] だけ入れて 水に浮かべると、 図1のように長さ d [m] だけ水面上に出て静止した。 このとき円柱 が受ける重力の大きさはア [N] である。 水中の物体は,その物体が押しのけた体 積の水が受ける重力の大きさに等しい浮力を鉛直上向きに受けるので、円柱が受ける 浮力の大きさはイ [N] となる。 イに入る適切な文字式を下の解答群の中から1つ選べ。 ③SLg ア ア :posLg ②poLig イ :D PSLg ② pSL-dg 3 PS(L-L₁)g PiSL₁g ④ poS(L-L-dg+pSLng (2) (1)における長さ d [m] を求めよ。 (3) 円柱が静止した状態で、 図2に示すように上から力を加え, 長さ x[m] だけ沈め た。 ただし, xはdに比べて十分小さいとする。 このとき円柱が受ける重力と浮力の 力の大きさ F [N] を求めよ。 (4) 円柱の残りの空間を密度が2〔kg/m3] (ただし, P1 P2) の物質で完全に満たして水 に入れた。 このとき, 図3のように円柱の上面が水面とちょうど同じ位置になって静 止したとする。 物質の密度 P2 [kg/m3] を求めよ。

回答募集中 回答数: 0