学年

質問の種類

英語 高校生

答え合わせをよろしくお願いします。

B 与えられた日本語の内容が伝わるように, う。必要があれば,適切な形になおしなさい。 同じ単語を何度使用してもかまいません。 1.私たちは留学生にアメリカの学校生活について話してもらいました。 We asked an international student for ( her school life in the United States. 2. 留学生のクレアは,まだ制服を着ることに慣れていません。 ) about break / aye! enjoy / forget /mind/put /refase / Claire, the international student, is not yet used to ( vearing) regret / stúdy a uniform. 3.彼女は時々制服のリボンをつけていくのを忘れてしまいます。 Sometimes she (forgets )( to )( but / talk/to /try/wear ) on her uniform ribbon. 4.この学校では,装飾品を身につけたり髪を染めることは禁止されています。 (Wearing) jewelry or ( dyeing) hair are banned at this school. 5. 私は以前, 校則を破ったことを後悔しています。 I regret )( breaking) the school rules before. ( 6.アメリカでは,生徒がお化粧をしていても先生はなんとも思わないそうです。 In the United States, she says teachers don't students (putting) on makeup. mind ) 7. 彼女は学校の規則は厳しいと言っていますが,日本で勉強することは楽しんでいます。 She says the school rules are strict, but she (enjoys )( studying in Japan. 8. 彼女の長所は, 決して新しいものに挑戦することを断らないことです。 Her strength is never ( refusing) to ( try )new things.

未解決 回答数: 0
数学 高校生

画像の問題でなぜa=0の場合も考えなければならないのですか。 また下の問題ではa=0の場合を考えずに解いていたのですが何の違いですか。

重要 例題 56 1次関数の決定 (2) 101 ののののの 関数y=ax-a+3 (0≦x≦2) の値域が 1≦ysb であるとき、定数a,bの 値を求めよ。 基本 49 CHART & THINKING グラフ利用 端点に注目 1次関数とは書かれていない。 また, 1次の係数の符号がわからないから, グラフが右上 がりか、右下がりかもわからない。 このようなときは,αが正, 0, 負の場合に分けて考えて みよう。 →a>0 のときグラフは右上がり, a<0 のときグラフは右下がり。 a>0, a=0, a<0 の各場合において値域を求め、 それが 1sysb と一致する条件から a. bの連立方程式を作り、 解く。 このとき,得られたαの値が場合分けの条件を満たしているかどうか確認することを忘れ ずに。 解答 x=0 のとき y=-a+3, x=2のとき y=a+3 [1] α>0 のとき [1]y この関数はの値が増加するとyの値も増加するから x=2で最大 b, x=0で最小値1をとる。 3 7 関数とグラフ よって これを解いて +3=b, -α+3=1M a=2, b=5 んで これは α>0を満たす。 wwwwwwww [2] α=0 のとき -a+3 70 よん?! この関数は α=0 の場合を忘れない y=3 ように。 このとき, 値域は y=3 であり, 1≦ybに適さない。 定数関数 [3] α <0 のとき [3].y この関数はxの値が増加するとyの値は減少するから, x=0で最大値 b, x=2で最小値1をとる。 ba+3 よって -a+3=b, a+3=1 これを解いて α=-2,6=5 これは α<0 を満たす。 [1]~[3] から (a, b)=(2, 5), (-2, 5) PRACTICE 56 定義域が −2≦x≦2, 値域が −2≦y≦4 である1次関数を求めよ。 (2) 関数y=ax+b b≦x≦b+1) の値域が-3≦y≦5であるとき、定数a, b の 値を求めよ。 が正って なんでわかるのか

未解決 回答数: 1
英語 高校生

①赤いマーカーで引いてある部分(3箇所)の文構造 ②2枚目の写真の赤く囲んであるtoについて訳し方、用法等 ③2枚目の写真の、赤いアンダーラインが引いてあるin existanceの訳し方等 以上の3つを解説いただきたいです🙇たくさんすみません💦よろしくお願いします🙏

Note: This is not a word-for-word transcript. Neil Hello. This is 6 Minute English from BBC Learning English. I'm Neil. Beth And I'm Beth. Neil Shhh! Quiet please! I'm trying to read here, Beth! Beth Oh, excuse me! I didn't know this was a library. Neil Well, what exactly is a library? Have you ever thought about that? Beth Well, somewhere with lots of books I suppose, where you go to read or study. Neil A symbol of knowledge and learning, a place to keep warm in the winter, or somewhere to murder victims in a crime novel: libraries can be all of these things, and more. Beth In this programme, we'll be looking into the hidden life of the library, including one of the most famous, the Great Library of Alexandria, founded in ancient Egypt in around 285 BCE. And as usual, we'll be learning some useful new vocabulary, and doing it all in a whisper so as not to disturb anyone! Neil Glad to hear it! But before we get out our library cards, I have a question for you, Beth. Founded in 1973 in central London, the British Library is one of the largest libraries in the world, containing around 200 million books. But which of the following can be found on its shelves. Is it: a) the earliest known printing of the Bible? b) the first edition of The Times' newspaper from 1788? or, c) the original manuscripts of the Harry Potter books? Beth I'II guess it's the first edition of the famous British newspaper, 'The Times'. Neil OK, Beth, I'll reveal the answer at the end of the programme. Libraries mean different things to different people, so who better to ask than someone who has written the book on it, literally. Professor Andrew Pettegree is the author of a new book, 'A Fragile History of the Library'. Here he explains what a library means to him to BBC Radio 3 programme, Art & Ideas: Andrew Pettegree Well, in my view, a library is any collection of books which is deliberately put together by its owner or patron. So, in the 15th century a library can be 30 manuscripts painfully put together during the course of a lifetime, or it can be two shelves of paperbacks in your home. Beth Andrew defines a library as any collection of books someone has intentionally built up. This could be as simple as a few paperbacks, cheap books with a cover made of thick paper.

回答募集中 回答数: 0
数学 高校生

(2)の問題でaの二乗を求めた時に出た答えを約分しちゃダメな理由とaの二乗から二乗を外さないで計算する理由を教えてほしいです!!

P.210 基本 基本 例題 132 多角形の面積 次のような図形の面積Sを求めよ。 (1) AB=6,BC=10, CD = 5, ∠B=∠C=60°の四角形ABCD (2) 1辺の長さが1の正八角形 CHART & THINKING (1) まずは右のように図をかいてみよう。 基本131 からSを、それぞ 多角形の面積はいくつかの三角形に分割するのが基本方針 だが,対角線 AC, BD のどちらで分割するのがよいだろうか? ACで分割→ △ABCに余弦定理を用いると、線分AC の 長さは求められるが,DACの面積はすぐにはわからない。 BD で分割 → △BCD は BC:CD=2:1, ∠BCD=60° に 注目すると, ∠DBCの大きさや線分 BD の長さがわかる。 これを利用して △ABD の面 積を求めてみよう。 6. 5 60° 60° B 10 C 4章 解 (1) (後半) ロンの公式を用 =4+5+6 から って =√s(s-as- (2) 正八角形の外接円の中心を通る対角線で8つの三角形に分割すればよい。 解答 (1) BCD において, BC=10, CD = 5,∠C=60°から ∠BDC=90° ∠DBC=30° BD=BCsin60°=5√3 6 5√3 157 15 22 30° 15/7 △ABD において ∠ABD= ∠ABC-∠DBC=30° 30° 60℃ 4 よって, 求める面積は B 10 60° S=△BCD+ △ABD _n 150° 150=- =1/23・5・5√3+1/23・6・5v3 sin30°=20√3 (2) 正八角形の外接円の中心を0, 1辺をAB とすると AB=1, ∠AOB=360°÷8=45° OA=OB=α とすると, OAB において, 余弦定理により 12=α²+α2-2aacos 45° 整理して 1=(2-√2)a² s150°=- ゆえに a²=- 1 2-√2 2+√2 2 よって, 求める面積は S=8△OAB=8asin45°=2(√2+1) 8.1/23a'si PRACTICE 132Ⓡ 合同な8個の三角形に分 ける。 A 1 B a 45% a αのまま代入する。 )は鈍角三 次のような図形の面積を求めよ。 (1)AD // BC, AB=5,BC=6,DA=2,∠ABC=60°の四角形ABCD (3)1辺の長さが1の正十二角形 (2)AB=2,BC=√3+1,CD=√2,B=60°,C=75° の四角形ABCD 15 三角形の面積、空間図形への応用

未解決 回答数: 1