学年

質問の種類

物理 高校生

4番について質問したいです。 これの答えがイになる理由がわかりません。鉛直方向で考えると,自由落下の運動と同じになるのではないかと思ったからです。解説の書いてあることもあまりピンときてません。 どこから考え方が違うのか,どう違うのかを教えて欲しいです。

よって 36 ゆえに '=6.0rad/s 基本例題 12 慣性力 •53,54,55,56 解説動画 一定の大きさの加速度αで進行中の電車の天井から 質量mのおもりを糸でつるした。 電車内の人には,糸 が鉛直方向から角度0傾いて静止しているように見え た。重力加速度の大きさをgとする。 (1) 電車の加速度の向きは右向きか左向きのどちらか。 (2) tan の値を求めよ。 (3) 糸がおもりを引く力の大きさSをm,g, a を用いて表せ。 ア 人 (4) 突然糸が切れた。 電車内の人から見ると, おもりの軌道はア〜ウのいずれか。 指針 電車に乗った観測者から見ると, おもりには慣性力がはたらいているように見える。その 向きは,電車の加速度の向きと反対である。 解答 (1) 糸の傾きより慣 糸が引く力 性力の向きは右 Scos e 向きである。 よ って,加速度の 向きは左向き。 (2) 電車内の人から 見ると, 重力, SA 0: 慣性力 水平方向: Ssino-ma=0 鉛直方向: Scos0-mg=0 ①,②式より tan0 ・① sin a coso g ma Ssine 重力 mg 糸が引く力, 慣性力の3力がつりあ っているように見える。 力のつりあ いより (3) 糸が引く力の大きさは三平方の定理より S=√(mg)2+(ma)2=m√g2+a (4) 電車内の人から見ると, おもりは重力と 慣性力を受けて運動するように見える。 したがって, それらの合力の向きに, 等加 速度直線運動を行う。 よってイ

解決済み 回答数: 2
数学 高校生

最後の方で、絶対値a+bが0以上になってると思うんですけど、0も含まれる根拠を教えて欲しいです。

ベクトルの内積 (213) C1-27 例題 C1.14 内積とベクトルの大きさ(3) **** ベクトルà, 方 が la-6=1, |2a+36|=1 を満たすときの最 大値、最小値を求めよ. 考え方 ab=u2a+36=0 とおくと=10=1+1=1/2(+20) となる。 最大値を求めるのに 絶対値が式のとき ....... 2a+3b=v .......② とおくと ||=1, |v|=1 解答 ①②より、auで表すと文字ありが2つ a+b=u+2v a=3u+v 5 b-v-2u 5 よって, これを表すために 5 を使う ữ ta là | u+2v 5 25 (|u|²+4u v +4|v|²) 1 25 25 www ここで,||||||||より 16+20-12/3 (14+40+416円) (12+4uv+4×12)=- (5+4u-v) 080 ③ ①×3+② より 5a-3u+v ② ① ×2 より 56=v-2u したがって、 ③より1=105 25 01+20より 12/16/20 よって, a +6の最大値 最小値 1 3-5 -1≤u v≤1 |||=1, ||=1 a-b= |a|b|cos -1 cos 0≤1 th, -ab≤ab≤ab ( 内積の性質) 72-2ab+b² = 1 42+ 122 6+96² = 1 うになる。 +2 +22 とは同じ向きで, このとき,|a-6|=|-561=1より16=1/03 la +6=1/2/3 となるのは,=1のときであり、このときとは逆向きで, ||=||=1であるから, u=-v すなわち、 ① ② より ab=-(2a+36) であるから このとき より16=23 今回のように条件を満たす a, が存在することの確認を解答からは省略しているが, 求めた解が題意を満たすかどうかなどは,つねに確認する意識はもっておくとよい 第3章 練習 平面上のベクトルαが24+6=1-36=1 を満たすときの最 B1 B2 = p.C1-32 [12) C1 C1.14 大値、最小値を求めよ. C2 *** 1

解決済み 回答数: 1
数学 高校生

これの(2)の解き方の考え方を教えて欲しいです。

C1-40 (226) 第3章 平面上の Think 題 C1.22 ベクトルと軌跡 平面上に△ABC があり, 実数kに対し、 12p=46+5c-kc-b) 3PA +4PB+5PC=kBC を満たして動く点Pがある。このとき,次の問いに答えよ. (1) kがすべての実数値をとって変化するとき, 点Pの描く図形を図示 せよ. (2)△PAB, △PBCの面積をそれぞれ, S, S2 とするとき S:S2=1:2 となるようなkの値を求めよ. 考え方 (1) 点Aを基点として,AB=AC=CAP= とおいて与式に代入し、 の形に変形するは,を通りに平行な直線) 解答 wwwwwwwww (2) △ABCの面積をSとし,まずは S, S2 をそれぞれSで表す。 (1)点Aを基点とし,AB=1, AC=C, AP= とおく. 3PA+4PB+5PC=kBC より 3(-)+4(-)+5c-p)=k(c-b) AP: AQ=3:4 ...... ② より 4 41 38' 3 ベクトルと図形 (227) C1-41 **** であるから,S:S2=12 のとき, ST -S 80 △ABQの面積を S3 とすると, もう片方を特定 したがって, BQBC=1:6 ...... ③ 次に, ①を変形すると, △ABC: △ABQ =BC: BQ 0 んを含まない部分 12 46+5cc-6) ......1 (動かない) と, kを含 12 む部分(動く)に分け 49 3.46+52 (-b) る. -5-(-6)=5¬BC 9 12 9 10 A AP= (4+k)+(5-k)c 12 であり,②より ATH 0 AQ=1/AP=12(4+k)+(5-k)c 3 (4+k)b+(5-k)c よって, 交点の付 9 BQ=AQ-AB 12 (4+k)b+(5-k)c 一言 上の点である. 9 より,Qは直線 BC 点PがABCの内部 の場合と外部の場合が ある. 45246 第3章 4+k 5-k_9 1 9 9 9 RA 12 3-4 A 線分 BC を 54 に内分する点を D, 線分AD を だからBQBC-156k1 ORO 9 3:1 に内分する点をEとすると, wwwwwwwww A ADBC-AEBC 002+111.015-k=1 6 GO+AO-1 FP G wwww よって,点Pは点E を通り辺BC に平行な直線上 にある. RIA 3 5-k=± Q E 6 + P 11 その直線と辺 AB, AC の交点を F, Gとすると, AF: FB=AG: GCA B 5-D--4-C よって、 k = 1/12 1/27 7 13 2' =AE ED =3:1 であるから,点Pの描く図形 は、 右の図の直線 FG である. F P B PF G Q1B C kがすべての実数値を とるので,直線 FG と なる. 注》頂点Bを基点とし、BA=BC=BP=_ とすると 3PA+4PB+5PC-kBC 1, 3(a-p)+4(-p)+5(c-p)=kc となる. 5-k P この式を整理すると, 12 よって、点Pは,辺AB を 3:1に内分する点 F を通り直線 BC に平行な直線上を動く. B C 練習 01.22 ABCがあり実数kに対して、点PがPA+2P+3PC=kAB を満たすも B1 B2 ADDを求めよ C1 (2)直線APと直線BCの交点をQ とすると, FG/BC より AQ:PQ=AB:FB=4:1 したがって,△ABCの面積をSとすると,点Pが どこにあっても,△PBC の面積 2 は一定で, S= s

回答募集中 回答数: 0
数学 高校生

わからないことが2つあります。 ①なんでn>=2の時とn=1の時でわけないといけないのか ②n>=2のときのシグマの上にあるn-1はなにものなのか 教えてください!お願いします。

4 444 基本 22 階差数列(第1階差) 次の数列{a} の一般項を求めよ。 2, 7, 18, 35, 58, 00000 P.439 基本事項 指針数列を作る規則が簡単にわからないときは,階差数列を利用するとよい。 b. a. a. () 数列{a} の 階差数列 を {bm} とすると 解答 (a.): a az a3 a4 {6}: b₁ b₂ bs I- an-1 an bm-1 n≧2のときa=a+2bk k=1 n≧2のときについて、数列{q-} の一般項を求めた後は,それがn=1のときに成り立 つかどうかの確認を忘れないように。 CHART {a} の一般項 わからなければ階差数列{α+1-α } を調べる 数列{az} の階差数列を {bm} とすると {az}:2,7.18,35, 58, {6}: 5,11,17, 23, 数列{bm} は,初項 5, 公差6の等差数列であるから < 2 7 18 35 58 5 11 17 23 +6 +6 +6 bm=5+(n-1)・6=6n-1 n≧2のとき a =Q120k=2+Σ(6k-1) n=1のとき k=1 =2+62k-21 =2+6-(n−1)n-(n−1) =3m²-4n+3 ① 3n²-4n+3=3・14・1+3=2 n≧2に注意。 1 nではない Σbx ことに注意。 x=1 ◄k k=n(+1) での代わりにn-1とお いたもの。 初頭は α = 2 であるから,①はn=1のときも成り立つ。初項は特別扱い したがって an=3n²-4n+3 -1 a n≧1で1つの式に表 される(しめくくり)。 会「n≧2」としないで上の公式a=a+b を使用したら、間違いである。なぜなら、 1 k=1 n=1のときは和 - b が定まらないからである。という和の式があれば、≧ k=1 k= であることに注意しよう。

解決済み 回答数: 1
数学 高校生

まず、確率は誰よりも苦手と言えるくらい悲惨な状況です。その事を理解してもらった上で回答をお願いします🙇‍♀️ この青ラインの所についてですが、何を言っているのかが分かりません。このような質問はあまり良くないことは理解しているのですが、ほんとに分からないので、どなたか猿にで... 続きを読む

ITEM 場合の数 8 同じものを含む順列 チェック! ① (2) (3) ITEM2の 「順列」 は、 全て異なるものの並べ方でした. それに対して,ここでは同じ ものが含まれている場合の並べ方を考えます. ここが「同じもの」をいったん区別して考え公式を覚える ステージ1 原理原則編 場合の数 例題 aaa Do の5枚のカードを1列に並べる方法は何通りあるか. 方針] カード どうし,カード どうしは,区別しないで数えます. 「解答」 カード a 3枚, カード2枚はそれぞれ同じものだから, 求める個数は “割り算”・・・ 5! _5・4・3・210(通り). 3!2! 3.2.2 解説 前 ITEM の 「sC2」の計算と同様, ここでも “割り算” が現れます. その理由も、実は 前 ITEM とまったく同じです. 本間では5枚のカードを aaabb a1 az b1 as b2 a1 az b2 as bi 区別しない 区別しない a ababe という立場で考えなければなりませんが,こ れは直接には “求めづらい”ので, a1 as b1 az bz la ・・・② as az b2 a1 b1 [○○] 区別 [?] のようにどうし,どうしも番号を付し て区別するという別の視点に立ってみます。 すると右図のように①の各々に対して,a, aどうし, bどうし を区別しない aどうし, bどうし を区別する 対応関係を視 6 の番号の違いを考えることで3! 2!通りの②の並べ方が対応します。 ② のように 5 枚全てを区別したときの並べ方は5!通りなので, 求める個数をxとすると, x×3!・2!=5!. 積の法則 求めたい 求めやすい 5! .. x= "割り算” 3!2! 前 ITEM と同じでしたね. [補足] 本間の答えは 5! 5.4.3.2.1 5.4 3!・2! 3・2・1×2! 2! と変形でき,これは前ITEM 例題7 の答え: 6C2 と一致しますね. これは,次のよう にして説明がつきます. cs CamScanner でスキャン 36 → 4.922.32

解決済み 回答数: 1