学年

質問の種類

物理 高校生

(1)を図ありで説明して欲しいです🙇‍♂️

2.0m/s 例題 3速度の合成 →8 解説動画 流れの速さが2.0m/sのまっすぐな川がある。 この川を,静水上を4.0m/sの速さで進む船 川を直角に横切りながら、 対岸まで進む。 このとき, 川の流れの方向をx方向, 対岸へ向かう 方向を方向とする。 (1) 静水上における, 船の速度のx成分を求めよ。 (2) 静水上における, 船の速度の成分を求めよ。 第1章 ◆(3) へさきを向けるべき図の角8の値を求めよ。 脂指針 川の流れの速度と船 (静水上)の速度の合成速度の向きが, 川の流れと垂直になる。 解答 (1) 船が川を直角に横切るとき, 船の速度のx成 分と, 川の流れの速度は打ち消しあっている。 よって 船の速度の成分は (2) 船が川の流れに対して直角に進 むので、 右図のように,船 (静水 上)の速度と川の流れの速度の 合成速度が、川の流れと垂直に なる ここで, PQR は辺の比 が1:2:√3 の直角三角形であ る。 2.0m/s ① QR へ60° 4.0m/s 09 1 P2.0m/s よって PR=2.0√3≒3.5 ゆえに、船の速度のy成分は 3.5m/s 別解 三平方の定理より PR=√4.0°-2.02=√12=2√3 3.5 (3)(2)より0=60° [注] 川を横切る船はへさきの向きとは異なる向きに進 む。 [注 √31.732・・・ や, √2 1414・・・ などの値は覚え ておこう。 演の

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

どうしてnを無限大にしたときに0になることを証明しているんですか?

f(x)=f(0) + f'(x+ 2! Rn(x) = 1! r(@s+... f(n)(0zzn (001) n! f" (0) x2 +... + 44 マクローリン展開 第2章 微 f(x) が0を含む開区間 I で無限回微分可能(すべ てのnに対してn回微分可能) であるとき, 任意のæ∈I と任意のnEN に対して 2.4 テイラーの定理 45 【解】 (1) を示す. 例18より Rm (z) = 0x n! -T” だから1章例題2より, f(n-1) (0) 0x -x-1 (n-1)! + Rn(x), |Rn(x)|= = n! || xn "ex - n! →0 (n→ ∞) f(x)は をみたす 日=日(π,n) が存在する. ここでもしRn(x)0 (n→∞)なら -> f'(0) f" (0) f(x)=f(0) + -x+ 22 +・・・ + f(n) (0) -xn 1! 2! n! +... と無限級数で表される. 右辺の無限級数を f(x) のマクローリン展開ある はマクローリン級数という(級数については6章を参照のこと)。 は証明を省略する (6章 6.4 節参照). 問21 例20の (2) (3) を示せ. 注eのマクローリン展開 (1) において,π=i0 (iは虚数単位; i = √-1) と おくと, sin π, cosæ のマクローリン展開 (2), (3) から eid=cos0+isin O が得られる.これをオイラー (Euler) の関係式という. となり結論を得る。 (2), (3) も同様に示される。 (4), (5) の証明には、 定理 12 において別の形の剰余項(コーシーの剰余など) をとる必要がある. ここで 例20 T xn (1) ez=1+ + + + n! (-x<x<∞) 問22|x|<1のとき次の級数展開が成り立つことを示せ。 ( 6章定理1参照) I 2.5 2n 1 (2) sin x = + 1 3! ・+ (−1)n-1. 5! +... (2n-1)! log 1+2=2(x+++...) 3 5 (-x<x<∞) x2n + .... + (−1)". [( 2n) ! ·+(-1)n−12 +・・・ (-∞<x<∞) x2 24 (3) cos x = 1- 2! 4! x2 (4)log(1+z)=x_ x3 + 2 3 n 1.3...(2n-3) 2.4... (2n) (−1<x≤1) (5)(一般の2項定理) | ネイピアの数とオイラー は任意の実数とする. +(-1)^- 「対数」という言葉はネイピアが導入した. オ イラーは級数 (1+m) = 1 + - a a(a-1)²+ 1 1 1 2! 1+ + +・・・+ 1! 2! ala-1)...(a− n + 1) (Iml<1) を考え、その和をeで表した.また,その数値を計算し,eを底とする対 問23|x|<1のとき次の級数展開が成り立つことを示せ. 1 (1) (1+m)2 = 1-2x+3x² -.... .+ (−1)"(n+1)x" +... (2) V1 +æ=1+zx- 1 1 2 x² 2.4 2 1.3 + 2.4.6 2.3

解決済み 回答数: 1
数学 高校生

数B 数列の問題です。練習27を教科書の例題を見ながら途中まで解いてみましたが、ここまで合っているかどうかも、この先の解き方も分かりません。

ここでは、1からnまでの自然数の2乗の和 第2節 いろいろな数列 | 27 Σ k² = 1²+2²+3²+...+n² を求めてみよう。 恒等式(k-1)=3k-3k+1 を利用して考える。 に1からnまでを順に代入すると 5 左辺だけ加えると k=1 13-03-3-12-3-1+1 N-03 k=2 23-13-3-22-3.2+1 k=3 3-2°=3.32-3・3+1 + n-(n-1)3 n3-03 k=nn³-(n-1)³=3.n²-3⋅n+1 これらn個の等式の辺々を加えると n=3(1+2+3+......+n") - 3(1+2+3+... +n) +1×n 第1章 数列 練27 (43451 k4-(k-1)" 2 468-660-46-1 を用いて 次の等を証明せよ。 ん {In (n+1)}" k=1 K=2 K=3 100 k=w 13×23×33× 1"-04 4.13 -6.12 +4.1 - 1 2" - 17 = 4.23-6-22-412-1 34-24 = 4.33-63244×3-1 h" - (n-1) = 4 n³ - 6 ∙n² +4. n -1 10 これろん個の等式の辺々を加えると 14- 4 (13 + 2 ³ - 33 + +-6(1+2+32+TH + 4(1727311 th) n すなれる n4 E 4263 kol 2 6号に+4に 1 kol " 15 h4 = 4 2 ₤ 3 - 6 2 1²-4.2 4.(n+1)-1 (CH すなわち n³=3k²-3k+n k=1 k=1 1 n³-3 k²-3n(n+1)+n k = n(n+1) k=1 よって 6k=2n+3n(n+1)-2n k=1 6k=n(n+1)(2n+1) k=1 したがって Σ k² = 1² +2²+3² + ......+n²= n(n+1)(2n+1) k=1 練習等式 -(k-1)^=4k-6k²+4k-1 を用いて, 次の等式を証明 27 せよ。 {1/(n+1)} =1+2+3+…+= {/12n (n+1) *kにどのような値を代入しても成り立つ等式を,kについての恒等式という。 20

解決済み 回答数: 1