学年

質問の種類

数学 大学生・専門学校生・社会人

シグマを使った数列の問題について質問です シグマの上の部分に、n-1などの時かつシグマの中身の部分の指数にk-1など、指数が文字のみではない時はどのような計算をするのですか 例えば、下線部がどのような計算をしたのかわからないです

基礎問 200 第7章 数 列 130 群数列(I) 精講 1から順に並べた自然数を, 1/2, 3/4, 5, 6, 7/8, 9, 10, 11, 12, 13, 14, 15 16, のように、第n群(n=1, 2, ...) が 27-1 個の数を含むように分け る. (1) 第n群の最初の数をnで表せ (2) 第n群に含まれる数の総和を求めよ. (3) 3000は第何群の何番目にあるか. ある規則のある数列に区切りを入れて固まりを作ってできる群数列 を考えるときは, 「もとの数列ではじめから数えて第何項目か?」 と考えます。このとき,第n群に入っている項の数を用意し,各群の最後の数 に着目します。 解答 (1) 第 (n-1) 群の最後の数は、はじめから数えて (1+2+..+27-2) 項目. すなわち, (27-1-1) 項目だからその数字は 2-1-1 よって、 第n群の最初の数は (2-1-1)+1=2-1 (2) (1)より,第2群に含まれる数は 初項2"-1 公差 1 項数2の等差数列. よって, 求める総和は 10 ・2n- 2-¹ (2-2-¹+(2-1-1). 1) 2 【各群の最後の数が基 準 【等比数列の和の公式 を用いて計算する AD =2"-2(2.2-1+2"-1-1)=2"-2(3.2"-'-1) (別解) 2行目は初項2"-1 末項2"-1. 項数2"-1の等差数列と考えて

回答募集中 回答数: 0
数学 高校生

高校数学B 全体的に教えて頂けませんか。

256 第14章 数 列 重要 例題64 群数列 初項が-100 で公差が5の等差数列{an}の一般項はan=1 ある。 この数列を次のように1個,2個, 22 個, 23個, as | a2 as | as as as ar | as (1) 番目の区画の最初の項をbm とおくとbg = エオカ であり 61+6+6+....+bg=キクケである。 (2) 6番目の区画に入る項の和はコサシス である。 POINT! 群数列 → 第 N区画の項数をNで表す。 第N区画の初項,末項は,もとの数列の第何項か を考える。 【解答】 an=-100+(n-1)・5=ア5 (nーイウ21) (1)第n区画には27-1 個の項が含まれているから, 第 (m-1) 区画の最後の項は,もとの数列の 第 {1+2+22+..+2(m-1)-1} 項である。 1・(2m-1-1)=2m-1-1であるから, 2-1 よってbm=a2m-1=5(2m-1-21) ゆえに bg=5(26−1− 535 21)=5(128-21)=エオカ 1+2+ ...... +2m-2= 0 104 第 m 区画の最初の項bm はもとの数列の第(2m-1-1+1) 項第 (m-1) 区画の最後の すなわち第 27-1 項である。 項の次の項が,第 m 区画 の最初の項である。 またbi+b2+.....+bs=252-21) k=1 5(28-1) 2-1 で ア(n-イウ)・ と区画に分ける。 -8・5・21=キクケ 435 (2) ① から, 6番目の区画の最初の項は, もとの数列の 第 26-1 項, 最後の項は第 (27-1-1) 項である。 32 の等差数列の和であるから ◆等差数列 →基 103 ◆各区画の項数の和がもと の数列の項の数を表す。 区画 12... m-1 m | |…|0|0 項数 12···· 2(m-1)-1 2 ◆等比数列の和 ◆計算基 104, 106 よって, 求める和は α32 +α33+..+α63 また,第6区画の項数は26-1=32であるから求める和はもとの数列は等差数列。 初項 α32=5(32-21)=55, 末項 α63=5(63-21)=210, 項数 ◆第7区画の最初の項の前 の項。 32(55+210) = コサシス 4240 (項数)・{(初項)+(末項) 2 →基 103 ■練習 64 数列 1, 2,2,3,3,3,4,4,4,4,5,555,5,6, の第n項をam とする。 この数列を 12,23,334, 4,4,45, 1個 2個 3個 4個, と区画に分ける。 第1区画から第 20 区画までの区画に含まれる項の個数はアイウであり, a215 エオとなる。 のよう また, 第1区画から第20区画までの区画に含まれる項の総和はカキクケであり, a+a+as+..+an≧3000 となる最小の自然数nはコサシである。

回答募集中 回答数: 0
数学 高校生

この問題が(1)から分からないので詳しく教えてほしいです

ず。 <設問別学力要素> 大間 分野 内容 13 数列 大問 小間 →解答 Ⅱ型 6 解答 参照 解説 Ⅱ型 6 解説 参照 ④4 微分法 【III型 必須問題】 (配点 【配点】 (1) 28点. 2304 (2) 12点 40点 (1) (2) (3) 配点 8 とする. 以下において, lim- x-00 《設問別学力要素》 分野 内容 16 16 出題のねらい 群数列の規則性を理解し、 第k群の末頃まで の項数, 第k群に含まれる項の和を求めること ができるか, さらにそれらを利用して, 条件を満 たす項が第何項か、 および, 条件を満たす項の和 がどうなるかを求めることができるかを確認する 問題である. 4 微分法 f(x)=x2+ax-axlogx (aは正の定数) 10gx=0であるこ 知識 技能 O とは用いてよい. (1) f(x) が極値をとるxの個数が2であるよう なαの値の範囲を求めよ. (2) a=²のとき, f(x) の極小値を求めよ。 40点) 40年) 画 #033410 (1 配点 小問 配点 40点 (1) (2) 28 12 思考力 判断力 O 知識 技能 -S=(x)) 表現力 思考力 判断力 O O 表現力 出題のねらい 導関数を利用して関数の増減を分析することが GTD d できるかを確認する問題である. ◆ 解答 (1) f(x) の定義域は x>0 である.まず, 2 f(x)=x2+ax-axlogx, f'(x)=2x+a-a(logx+1) - 33 f"(x)=2-a x 40 であるから,f'(x) の増減は次の通り。 a (0) (∞) 2 0 f" (x) f'(x) さらに, x→+0 =2x-alogx, limf'(x)=8, x100 2x-a limf'(x) = limx2-α・ O x80 8 2015 =8 である. ここで、f(x) が極値をとるxの個数が2と なるのは,f'(x) がちょうど2回符号変化する ときであり,それは y=f'(x) のグラフが次の ようになるときである. + 2 よって, 求める条件は logx y=f'(x) () <0. に着目して万物 a-alog // <0. log>1. a> 2e. (2)a=²のときは α > 2e が成立するので, の場合に該当し, y=f'(x)のグラフは次の り。 ただし,x軸との共有点のx座標を B(a <B) とする。 (x) g(x) + (x)u(x) \ = '[(2)x(z)).

回答募集中 回答数: 0
数学 高校生

数B なぜ四角のようになるのか分かりません 教えてください!!

(2) 第1 CHART OLUTION 和を求めよ。 2-1-1 2-1 [類 京都産大] 群数列の基本 第群の最初の項や数 に注目...... 例題のように,群に分けられた数列 を群数列という。 (1) 第4群の末頃までの項の総数を N とすると, 第5群の初めの数は、自然数の 列の第 (N+1) 項である。 また, 自然数の列の第1項の数はとなる (2) 連続する自然数の和であるから公差1の等差数列の和で,あとは初項と 数がわかればよい。 初項は (1) と同様にして求まる。 項数は問題文から すぐ にわかる。 区切りを入れる と分け方の規則 がみえてくる もとの数列 群数列 FE 第4群の末項までの項の総数は 1+2+22+2°=15 第5群の末頃までの項の総数は 1+2+2²+2³+2¹=31 よって,第5群の初めの数は 16,終わりの数は31 2) n≧2のとき,第 (n-1) 群の末項までの項の総数は n-1 Σ2²-1= -=2n-1-1 k=1 (1+x)k 20001 ゆえに,第n群の初めの数は ( 2 -1-1)+1 すなわち 27-1 BANDITU 重要 98 区切りをとると もとの数列の規 則がみえてくる - n-1 Σ2-1は,初項1,公比 k=1 2の等比数列の初項か (n-1)項までの和。 これは n=1のときにも成り立つ。 別解 第n群の終わりの数 よって,第n群に含まれる数の総和は,初項が2" -1, 公差がは2"-1 であるから、和は 項数が 2-1 の等差数列の和となるから、求める和は 11.2"-'{2"-' +(2"-1)} 2 1/1/20 ・2"-1(2.2"-1+(2″-1-1)・1}=2"-2(3.2"-1-1) =2"-2(3-2-¹-1) TRACTICE ... 97 ② 正の奇数の列を次のように, 第n群が (2n-1) 個の奇数を含むように分ける。 1/3, 5, 7 9, 11, 13, 15, 17|19, 21, 23, 25, 27, 29, 31/...... 80 3章 12

回答募集中 回答数: 0
数学 高校生

ピンクで線を引いたところが分かりません🥺なぜm²-m+1になるのでしょうか?😭

指針> 群数列 1|2,3,4|5,6,7,8,9|10,11, 然数を mを用いて表せ。0S 並べられた自然数を,次のように群詳に分けて考える。 )左から m番目,上からm 番目の位置にある自 して、まず 150 が第何群の何番目の項であるかを調べる。 (2) 150 が第m 群に含まれるとする。第(m-1)群までの項数に注目 (1) 左から m番目,上から m番目の数は、,上の群数列で第m群の m 113 自然数の表と群数列 重要 例題 「自然数 1,2,3. を、右の図のように並べる。 m 551 m 1 2 5 1017 2% 4 3 611 18 9 【類宮崎大) るか。 8 7 12 16| 15 14 13 基本111 3章 で考える。 14 番目となる。 12510| 種 +361 m 9-8-712 |16-15H4+13 列 *ャ* |解答 検討) 1 12, 3, 4|5, 6,7, 8, 9|10, 11, 0のの第1群から第m群までの項数は の (1) m行m列の正方形を考える と,図のようになる。 1+3+5+……+(2m-1)=m" 1 左から m 番目,上から m番目は,① の第m群の m番 目の位置にあるから m個 (m-1)+m=mn'-m+1 m (2) 150 が第m群に含まれるとすると (m-1)<150<m" 12<150<13° から,この不等式を満たす自然数 mは m個 口には(m-1)°+m =m'-m+1が入る。 (2) 12<150<13° であるから、上 の図で m=13 の場合を考える。 なお,例えば,165は同じ第13 群の 21 番目であるが,13<21 より,左から13°-165+1=5 (番目),上から13番目である。 m=13 第12群までの項数は 12°=144 であるから,150 は第13 群の 150-144=6(番目)である。 また,第13群の中央の数は 13番目の項で 6<13 よって, 150 は 左から13 番目,上から6番目 の位置に ある。 2 4|7 目然数1,2,3, を,右の図のように並べる。 1日の位置にある自然 1 3|5|8

回答募集中 回答数: 0
数学 高校生

紫のペンで引いたところが分かりません🥺なぜnで割っているのですか?

分子は,初項1,公差1の等差数列である。すなわち,もとの数列の項数と分子は等 について,第1項から第100項までの和を求めよ。 O景 [類岩手 OOO00 基本 例題112 群数列の応用 9 8 550 の分数の数列について、 10 11 6 7 4'5' 3 4 5 2 も ずすすす [類東北学院大) 1'2'2'3'3'3'4'4'4 基本111) 初項から第210項までの和を求めよ。 の籍 分母:1|2,2| 3,3, 3|4,4,4,4|5, 1個 2個 指針> 分母が変わるところで 区切り を入れて,群数列 として考える。 4個 第n群には,分母がn の分数がn個あることがわかる。 分子:1|2,3| 4, 5, 6|7,8, 9, 10 |11, 3個 しい。 まず,第210項は第何群の何番目の数であるかを調べる。 解答 分母が等しいものを群として,次のように区切って考える。 6|7 8 もとの数列の第を頂は分 子がんである。また,第& 群は分母がkで, k個の数 3|4 5 9 10|11 1|2 1|2'2|3'3'3|4' 04'4' 4|5 第1群から第n群までの項数は 大き間 を含む。 イこれから,第n群の最後の 1 数の分子は n(n+1) 第210項が第n群に含まれるとすると 108-9-(1-)+1+1-11) 1 (n-1)n<210<→(n+1) 2 50 11 (半前) 知10 よって (n-1)n<420Sn(n+1) (n-1)n は単調に増加し, 19·20=380, 20·21=420であるから, のを満たす自然数nは また,第210項は分母が 20 である分数のうちで最後の数であ る。ここで,第n群に含まれるすべての数の和は n=20 1 ;20-21=210 0E 2 n?+1 は第n群の数の分子 ゆえに,求める和は の和→等差数列の和 20 k°+1 1 20 n{2a+(n-1)d} 20 1/20·21·41 11 k=1 k=1 2 2 \k=1 2 =1445 切を入れる に注目 練習 2の累乗を分母とする既約分数を,次のように並べた数列 112 1 1 2 3 1 3 8 5 7 135 麻15 1 4' 4 8'8'8'16' 16°(16' e1632 大

回答募集中 回答数: 0