学年

質問の種類

化学 高校生

答え合わせのために使いたいです 分かるところだけでもいいので教えてください🙇🏻‍♀️

次の問題を やってみよう トレーニング問題 □(1) 次の文中の ■にあてはまる文字式や語句を入れよ。 一定温度では、一定量の気体の体積は、圧力にアする。よって、圧力 をP,体積をVとするとイ=k(一定)が成り立つ。これをウの法 則とよぶ。 ア反比例 DIV=P2V2 ウボイル (解答: 別冊P2~) (2) 次の文中の [ にあてはまる圧力の単位記号を記せ。 大気圧は,水銀柱約76cmの圧力とつり合う。 そこで水銀柱76cm の圧力で ある760 アイ と定義した。一方, 1m²に1N (ニュートン) の力 が加わったときの圧力を1 ウと定義しているので、 1イは約 1.013 x 10ラウに等しい。 7 mmHg atm ウ Pa (3) 次の文中の にあてはまる文字式, 語句を入れよ。 一定圧力では,一定量の気体の体積は、絶対温度にアする。よって, 体積をV. 絶対温度を T〔K〕 とするとイ=h(一定) が成り立つ。これ をウの法則とよぶ。 ア反比例イ=ウシャルル (4) 次の文中の にあてはまる文字式, 語句を入れよ。 一定量の気体の体積は、圧力にアし、絶対温度に 体積をV, 圧力をP, 絶対温度を T〔K〕 とすると. 立つ。これをエの法則とよぶ。 T. FREKARI 1 EXABY & Pixvi Ti = P2XV2 T₂ する。よって, (一定)が成り ・エボイル・シャルル □(5)温度〔℃〕 圧力P [Pa] において, ある量の気体がv[mL] を占めるとき、 気体定数をR [Pa・L/ (K・mol)〕として,この気体の物質量を文字式で表せ。 PU=RT

回答募集中 回答数: 0
数学 高校生

22.1.ウ この記述でも問題ないですか?

44 基本例題 22 根号を含む式の計算(基本) (1) (ア), (イ) の値を求めよ。 (ウ) はがつかない形にせよ。 (ア)√(-5) (1) √(-8)(-2) (2) 次の式を計算せよ。 (ア) √/12+√27-48 (ウ) (2√2-√27) (1)(√11-√3)(√11+√3) (I) (√2+√3+√5)(√2+√3-√5) CHARTを含む式の計算 ①A=|4| 解答 (1) (7) √(-5)² =√/25= √5²=5 (イ)√(-8)(-2)=√16=√4=4 (ウ) α> 0, b<0であるから (¹) √a²b² (a>0, b<0) をつける。 指針 (1) A の取り扱いは,A=|4| とみるのがコツ。 つまり A≧0ならば A=A A <0ならば (1)まず√の中のものを計算。 (ウ) (ab) abの正負を調べる。 (2)を含む式の計算では,「2√3+3√3=(2+3)/」 といったように,の中が同 じ数である項を同類項とみて計算を行う。 00000 ab<0 ①√内の数を素因数分解し, kak√a (k>0, a>0) を用いて, 平方因数を√の外に出す。 √内をできるだけ小さい数にする。 [②] 文字式と同じように計算し, (va) が出てきたらαとする。 ② A'=-A よって √a²b² = √(ab)² = |ab|=-ab (2) (与式=√2・3+√32-3-√/ 4°・3=2√3+3√3-4√3 =(2+3-4)√3=√3 (イ) (与式)=(√II)-(√3)=11-3=8 - (ウ)() P.41 基本事項 SIAH) の中は小さい数に (ア) (-5)^5は誤り! √(-5)^2=|-5|=5として もよい。 (ウ)、(ab)=abは誤り! ●<0のとき ||=-● まず の中を小さい数 にする。 次 指針 (1) CH (1) 解 (2) (3) C

回答募集中 回答数: 0
数学 高校生

答え教えて欲しいです!

1 次の 0000 ベーシック数学 O O 平方 (2乗) すると9になる数は ① 】 である。 ○ 平方すると 25 になる数は【②】である。 一般に平方してαになる数を、α の【③】という。 「正の数の平方根は,正と負の2つある。 記号√(【④】 : 読み方 『ルート』)を用いて, 氏のおけるCDまたはでます。 平方根を、を用いずに表せる場合は、高 ○ 平方すると2になる数は【⑦】 の平方根であり, これを根号で表すと, 【⑧】である。 (①②のような場合) 【⑧】 を小数で表すと 「±1.41421356・・・」 と限りなく続く数となる。 A レベル 】にあてはまる語句・数字・式を答えよ。 (あてはまるものは全て答えよ) 2 次の数の平方根を求めよ。 ① 16 ①3 3 根号を使って、次の数の平方根を表せ。 が成り立つ。 O a√b=√√ 6 lxb 2 6 次の計算をせよ。 ①√2x3 4 次の 【 ○√は7の平方根の【①】 の方である。 O 【②】 は64の平方根の負の方である。 -100を根号を用いないで表すと, 【③】となる。 】にあてはまる語句・数字を答えよ。 ①には「正」か「負」かのどちらか答えよ。 " 64 5 次の 【 】 にあてはまる文字式を答えよ。 ○ 平方根の積と商は,正の数a,b について, √a×√b=√[ © ]×[ © ] √a ± √b = √ª = √! Ⓡ √b VI 1 a 81 ② 10 2 √12+√2 b 6 2-7 (a,b は正の数) ① 2~3 ⑧ 次の数 ① 回 次の を使っての外にある数を√の中に入れたり、√の中にある数をの外に出したりすることが できる。 3 O

回答募集中 回答数: 0
物理 高校生

緑のマーカーで引いているのがテストで間違えたところですべて分かりやすく解き方と解説お願いします🙇‍♀️ 今日中に答えてくれると嬉しいです!!! 宜しくお願いします!!!

p²-v₁² = ( 4 【選択肢】 (ア) votax いものや、不正をした (4) 3.72x106-2.5x105 37.2×105-2.5×101 12.5 1年物理基礎 1 文字,ox,a, を使って、以下の加速度運動の3つの公式をすべて書きたい。 次の文中の (①)~( に当てはまる文字式を,以下の選択肢 (ア) (カ)のうちから1つずつ選び記号で答えよ。 1つめの公式は、セー (① (3) となる。 (2) 5.1+3.56 =8,66÷8.7 右向きに 2.0 いないものは受け付 34.73.47×10 3.5 図は ラフの接線である。 次の各問に答えよ。 Tox soubun in 16.0-40 4,0-2,0 (イ) Dotat (15) vot+at² (I) vo+at² (オ) 2at (カ) 2ax 以下の例にならって、有効数字の桁数に注意して、次の(1)~(5)の測定値を計算せよ。 足し算引き算) の有効数字】 計算結果を、測定値の末位が最も高い数字に合わせて四捨五入します (991) 23.45+5.6=29.05 29.1 ko 5.0 9.0 6.0m15 で,2つめの公式は、y= (1) 2.6+1.6 (3) 8.5+4.5 = 13.0 (4) 4.20.6 = 3.6 42 3 以下の例にならって、有効数字の桁数に注意して,次の(1)~(5)の測定値を計算せよ。 (1) 3.2x102+2.5x102 (2) 4.75x 10³ +2.7x 10¹ (3) 5.1×10^-2.4x 10 (5) (6.0×10)×(2.5x102) 5 左向きにも (1) 時刻 20sから4.0s の間の、物体の平均の速度はいくらか。 (2) 時刻 2.0sにおける瞬間の速度はいくらか。 b 12.0 2,0 12,0 想文コンクールに応 。。 = 6.0 から 5.0t….30 (55) (②)で、3つめの公式は、 の表紙をつけて提出 4.75 -20=10+5.00 -5.00-10+20 -5.00=30500y9.0 to bo やか課題考査ⅡI 45 6.0 30 15,00 15×10. x[m]と時刻 [s)との関係を表している。 図中の直線は、 時刻 20sにおけるグ 軸上を運動している物体の位置 4,75 27 31.05 2 x [m) ↑ 16.0 12.0 9.0 (+)31-75×10² 4.0 1.01 0 5枚(1 3.175×100 0.76 314 4 (5) 4.20.76 = 3.4434 Vi Vo+at V1.0.0,50 2,0 1,0410 2.0 品 5 次の各設問に答えよ。 ただし, ベクトル量の答え方に注意せよ。 --+(214-0) (43,910) (1) 一定の速さ5.0m/sで直線上を走るとき, 9.0s間に進む距離は何mか。 9.0-40 32:50 (2) 静水の場合に速さ5.0m/sで進む船が, 速さ 1.0m/sで流れる川を下流から上流に向かって進んでいる。 岸から見た船の速度はいくらか。 (3) 直線上を右向きに速さ1.0m/sで歩いているA君から, 左向きに速さ5.0m/sで走っているB君を見たときの相対速度 10mls を求めよ。 神速度(Vo) -5.0-(+10) Vo = -5.0-1.0 = -6.0% 左向きに 6.0m/s 6.0m² V (4) 直線上を右向きに速さ10m/sで進んでいた物体が、一定の加速度の運動を始めて、 5.0s後に左向きに速さ20m/sと なった。 この間の加速度を求めよ。 Vo Dr 七 ↓ (5) 物体がx軸上を初速度1.0m/s, 一定の加速度 0.50m/s² 2.0s間運動すると、速度はいくらになるか。 符号を付け て答えよ。 12.7 (40問) 「6 図は、 Aは原点 ただし, 1 1 2 3 4 t(s) (1) グ (2) 小 (3) 時 小 の (4) (5)

回答募集中 回答数: 0
数学 高校生

上から5行目で、B^2>c^2➕a^2でとけないのか? よろしくお願いします🙇‍♀️

見学院大) [ 155 鈍角と とにな 等式 って 重要 例題 155 三角形の最大辺と最大角 00000 き、この三角形の最大の角の大きさを求めよ。 x>1とする。 三角形の3辺の長さがそれぞれ1.2x+1+x+1であると ■ 日本工大】 153, 154 三角形の最大の角は、最大の辺に対する角であるから、3辺の大小を調べる。 このとき、x>1を満たす適当な値を代入して、大小の目安をつけるとよい。 x-1=3, 2x+1=5, x²+x+1=7 例えば、x=2とすると +x+1が最大であるという予想がつく。 となるから、 三角形の成立条件 b-c| <a<b+c で確認することを忘れてはならない。 なお, x1, 2x+1, x²+x+1が三角形の3辺の長さとなることを CHARI 文字式の大小 数を代入して大小の目安をつける x2+x+1-(x2-1)=x+2>0 x2+x+1-(2x+1)=x2-x=x(x-1) > 0 よって, 3辺の長さを x2-1, 2x+1, x2+x+1とする三角形が 存在するための条件は x>1のとき ~_x³²Fx+1 ≤ (x²-1)+(2x+1) 整理すると x>1 したがって, x>1のとき三角形が存在する。 また、長さがx2+x+1 である辺が最大の辺であるからこの 辺に対する角が最大の内角である。 この角を0とすると, 余弦定理により cos0= = したがって (x²−1)²+(2x+1)² − (x²+x+1)² 2(x2-1)(2x+1) ¸xª−2x²+1+4x²+4x+1−(x²+x²+1+2x³+2x+2x²) 2(x2-1)(2x+1) -2x3-x2+2x+1 2(x2-1)(2x+1) (x2-1)(2x+1) 2(x2-1)(2x+1) 0=120° == = 2x3+x2-2x-1 2(x2-1)(2x+1) 1 2 x²+x+1が最大という予 想から、次のことを示す。 x2+x+1>x-1 x²+x+1>2x+1 三角形の成立条件 lb-cl <a <b+c は、 が最大辺のとき a<b+c だけでよい。 r-1. e 241 2x+1 tx+1 ◄2x³+x²-2x-1 =x2(2x+1)-(2x+1) =(x-1)(2x+1) 18

回答募集中 回答数: 0