学年

質問の種類

生物 高校生

生物基礎の問題で、なぜ「分泌顆粒数が少なくなった=ホルモンや酵素が分泌された」という考え方になるのでしょうか?どのように読み取るのでしょうか?それともこの内容は、暗記ですか?

81 すい臓のホルモン 5分 実験 正常な マウス No. 1 と No.2 から, 一晩絶食後に血 液を採取した。 絶食後, マウス No. 1にはグ ルコース 50mg入り生理的食塩水 0.5mL を 血管内に直接投与し, マウス No. 2には流動 食 (糖質50mgを含む) 0.5mLを胃内に直接 投与した。 投与1時間後 2 時間後に血液を採 図1 高 血糖値 ホルモン値 酵素値 低 絶食 1時間後 2時間後 Y細胞 細胞 取し血糖値, すい臓由来のホルモン値, すい臓由来の酵素値を測定した(図1)。 血糖値を上げるホルモンとしては, すい臓の ア などが知図2 られている。 図1のホルモン値は,イの推移を見たもので ある。 すい臓由来のデンプン分解酵素にはアミラーゼがあるが, 血中で高値にならないのは、 分泌された酵素はすい管を経て, 胃 と小腸をつなぐ十二指腸に排出されるからである。 図2にすい臓の顕微鏡像の模式図を示すが,X 細胞は, 分泌物 の合成に関与する細胞小器官が発達している。 Y細胞とZ細胞は, 血管にホルモンを分泌しており, 小型の分泌顆粒に分泌物が含ま X 細胞 。 No.1 • No. 2 れている。 (18 熊本大改) 問 ア イ ① グルカゴン に入る語を,次の①~④のうちからそれぞれ一つずつ選べ。 ② 糖質コルチコイド ③ アドレナリン 問2 マウス No.1 と No. 2 の投与後のすい臓 図3 X細胞 ④ インスリン Y 細胞 細胞 多 のX, Y, Z 細胞内での, 細胞当たりの分泌 顆粒数の推移を観察すると, 図3のように なった。 X, Y, Z細胞は,ア・[ イ (相対数) 少 アミラーゼのうちどの産生細胞か。 最も適当 な組合せを、次の①~⑥のうちから一つ選 絶食 1時間後 2時間後 べ。 ① ③ ⑤ アXYZ イ アミラーゼ Y Z ② X X Z Y ア XYZ ZZY イ アミラーゼ Y X X 。 No.1 • No.2 » 4. 例題 6

回答募集中 回答数: 0
生物 高校生

組換え価を求めるときの式がどうしてこうなるのか知りたいです。例えばYとRB間で➕➕対➕RB対Y➕対Y RBを求める時に➕➕➕と➕ct➕を足している意味がわからないです。

Date 問3F2 の表現型の表を, 遺伝子記号で表すと右のようになる。 2組の対立遺伝子に着目して個体数を数え, 組換え価を求める。 〔+ + + 〕 個体と [y ct rb] 個体の数が多いことから,これ以 外は組換えによって生じたものである。 Chapter (1) y-rb 2 [++]:[+rb]:[v+]:[y rb] =410+57:32 + 3:36 + 4:397 +61 |組換え価= (2)y-ct間 35 +40 ×100=7.5[%] 1000 〔++]:[+ct]:[y+]:[y ct] = 410 +3:57 +32 : 61+36: 表現型 + + +] [yct rb] [v + rb] 個体数 410 397 61 [ + ct + ] 57 [v + + 36 [+ct rb] 32 [yct+] 4 [ + + rb] 3 合計 1000 397 +4 89 +97 |組換え価 = ×100=18.6〔%〕 1000 142 (3) ct-rb [++]:[+yb]:[ct+〕: 〔ct yb〕 = 410 +36:61 + 3:57 + 4:397 +32 組換え価= 64+61 1000 x100=12.5〔%〕 問4 問3の組換え価を,X < Y, Z=X+Yの条件にあてはめると, Xは7.5 Y は 12.5 Zは20となる。 またアはy, イはrb, ウはctとなる。 問5 遺伝子間の距離が大きくなると乗換えが起こりやすくなるが、中には2回の乗換え (二重乗換え)が起こる場合もある。このとき, 両端の遺伝子は見かけ上組換えが起こっ ていない。そのため最も離れている遺伝子間の組換え価は,残り2つの組換え価の合計 よりも小さくなる(Z < X + Y となる) 1 〔茶体・赤眼〕 ⑥ 〔茶体・紫眼〕:② 〔黒体・赤眼〕 ② 〔黒体・紫眼〕: ③ 2④ 313% [解説] 問1 〔茶体・赤眼] の雄と 〔黒体・紫眼]の雌を交配して生まれた個体はすべて 型と一致したことから, 茶体・赤眼が顕性形質であり,伴性遺伝でないことが ぜならば、伴性遺伝であれば生まれた雄は黒体・紫眼になるはず ここで,それぞれの遺伝子記号を 茶休・

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

至急です (4)のcを教えてください

問題1 連立1次方程式 Az=b について, 以 (7) 係数行列 A の階数を答えよ. 下の 1から 3 に当てはまるものを答 rank A = 7 えよ.ただし, 1 0 -1 0 -2 1 (8) 拡大係数行列 [46] の階数を答えよ. rank [Ab = 8 0 1 1 0 1 -2 A = b -1 0 1 1 1 3 (9) 次の文の 9 「には,「もつ」か 「もたない」 のいずれかが入る. ふさわしい方を答えよ. 2 1 -1 0 -3, 1 とする. (1) 係数行列 A の階数を答えよ. rankA= 1 (2) 拡大係数行列 [ Ab ] の階数を答えよ. rank[Ab]=| 2 方程式 Az=bは解を 9 問題4 以下の 10 |から 21 に当ては まるものを答えよ . (a) 問題1から問題3の方程式で、解が存在する (3)次の文の 3 「には, 「もつ」か 「もたない」 が一意に定まらないものは問題 10 であ のいずれかが入る. ふさわしい方を答えよ. る. 10 に当てはまる問題番号を数字で答 えよ. 方程式 Ax = bは解を 3 問題2 連立1次方程式 Aæ = bについて 以 下の 4から 6 に当てはまるものを答 えよ.ただし, -20 30 A = 1 -2 121 b = 2 (b) 問題 10 の解は x=vo+C1v1+C202 と表される.ここで, C1, C2 は,任意の定数で あり, ベクトル 20, 1, 02 は, 11 " 2 -4 1 52 とする. 0 5 vo= 12 0 (4) 係数行列 A の階数を答えよ. rankA= (5) 拡大係数行列 [ Ab]の階数を答えよ. 13 4 14 17 1 0 01= 15 02= 18 , rank[Ab] = 5 0 1 (6)次の文の 6 には, 「もつ」か 「もたない」 のいずれかが入る. ふさわしい方を答えよ. 16 19 と表される. 方程式 Azbは解を 6 問題3 連立1次方程式 Aæ=bについて,以 下の7から 9 に当てはまるものを答 えよ. ただし, (c) 問題 10 |の行列Aを係数行列にもつ同 次方程式 Az=0を考える. この方程式の解は, 20 である.また,その解はæ= 21 と表される. 20 には,「自明」または「非自明」のい ずれかが入る. ふさわしい方を選んで答えよ. 2 3 -1 A = -1 2 2 b = • 21 1 1 1 -2 とする. |に当てはまるものとして,ふさわし いものを以下から選んで記号で答えよ. (ア)(イ) U (ウ) C101+C202

回答募集中 回答数: 0