学年

質問の種類

数学 高校生

この問題がよくわかりません 解説お願いします🙇‍♀️

"2 重要 例題 40=f(n) an-1型の漸化式 a1= 2' (n+1)an=(n-1) an-1 (n≧2) によって定められる数列{an} の一般項 00000 を求めよ。 [類 東京学芸大 指針 与えられた漸化式を変形すると an= n-1 n+1 -an-1 これは p.471 基本例題39に似ているが,おき換えを使わずに,次の方針で解ける。 〔方針1] an=f(n) an-1と変形すると これを繰り返すと an=f(n){f(n-1)an-2} an=f(n)f(n-1)...... f(2)a₁ よって,f(n)f(n-1)(2)はnの式であるから, an る。この形に変形できれば [方針2〕 漸化式をうまく変形して g(n)an=g(n-1)an-1 の形にできないかを考え g(n)an=g(n-1)an-1=g(n-2)an-2=.....=g(1)a が求められる。 まと 代表的な ① 等差 ②等比 3階 ant an であるから, an = g(1)a g(n) として求められる。 (S+α) (I+s) 解答 1. 漸化式を変形して (S) 解答 n-1 an= n+1 an-1 (n≥2) n-1 Pan an-1 n+1 n-1 n-2 ゆえに an= • n+1 n an-2 (n≥3) (+) (+) n-1 n-2 . n+1 n n-1 n-2 an-2 これを繰り返して n-1.n-2n-3321 n+1 n an= • . n-3 n+1 n n1 5 4 3 a1 an-3 n-1 2.1 よって 109 an= (n+1)n 2 すなわち an= 1 n(n+1) ① n=1のとき 11+1)=1/2 1.(1+1) 12 a₁ = 2 であるから,①はn=1のときも成り立つ。 解答 2. 漸化式の両辺に n を掛けると よって したがって +1)nan=n(n-1)an(≧2) (n+1)nan=n(n-1) an-1=......=2・1・α=1 an= n(n+1) これは n=1のときも成り立つ。 nを掛ける。 n+1とn-1の間にあ 数列{(n+1)nan} は, す べての項が等しい。 a D 5

未解決 回答数: 0
数学 大学生・専門学校生・社会人

4(4)(5) と 5 のリミットの計算ができません (4)はこれ以降どのようにすればいいかわからず、(5)と5の計算については全く分かりません どなたか教えてください

数学総合演習 (05/14, 解析) 解答は解答用紙1枚に全て記入すること. 裏面を使っても良い。 ・解答は 解の導出過程 (途中計算) も含めて, ていねいに記述すること. ・日付, 科目, 担当教官,氏名, 学籍番号, クラスを忘れずに記入すること. ※ 科目 数学総合演習1, 担当教官 美暁 解答用紙の提出について (ジャン シャオホン) 1. 演習レポート形式: 複数ページの解答用紙の写真を1つのPDFファイルにまとめて解答用紙に氏名、学籍番号、クラ スを忘れずに記入すること)。 ファイル上 (5MB)。 2 演習レポートのファイル名: "学籍番号演習期 pdf" としていただきますようお願いいたします。 (例: 学生 b1008300 について。 4月21日の演習の場合、レポートは "b1008300-0421.pdf になります。) 3.課題レポートの提出先: 以下の場所に提出してください。 [HOPE]-[数学総合演習11-EFGH]-数学総合演習1-解析 (1-EFGHクラス) (05/14) 提出締め切り:5月15日 (木) 午後6:30 まで。 解答の公開 5月15日 (木) からHOPEで公開されます。 1. (x+2)* を計算しなさい。 2. 次の一般項で与えられる数列のうち、 収束するものを選びなさい. an =2n+1,b=,c="ds=cosl n 3. 数列a.= (-)" が収束する範囲を求めよ。 また、収束するときの 72 極限値 lim (14) を求めよ. +80] 4. つぎの極限を調べよ。 4+8+... +4 n→∞ 1+3+…+ (2n-1) (1) lim n! (3) lim (5) lim V3n+1 72100 (2) lim n→∞0 (4) lim (1+1/+1/+ + n→∞ (6) lim noon- n 5.p>0.0>>とする。 4.+1=20 (1+pan)をみたす数列を考える。 1 + 2pan+s = (1+2pa) を示し, lim == 上を導け、 11-00 2p

未解決 回答数: 1
数学 高校生

上から4行目はなぜこうなるのですか?

基本 例題 29 漸化式と極限 (4) *** 連立形 00000 P1(1, 1), Xn+1 1 = 4 4 xn+n, In+1= 5 3 -xn+ 4 面上の点列 Pn(xn, くことを証明せよ。 指針 点列 P1, P2, yn) がある。 点列 P1, P2, 1 5yn (n=1, 2,......) を満たす平 がある定点に限りなく近づくことを示すには,lim, limyn がと はある定点に限りなく近づ [類 信州大 ] p.36 まとめ, 基本 26 n→∞ もに収束することをいえばよい。 そのためには,2つの数列{x},{y}の漸化式から Xn, yn を求める。 ここでは,まず,2つの漸化式の和をとってみるとよい。 (一般項を求める一般的な方法については、解答の後の注意のようになる。) 811 Xn+1= 1 3 xn+ yn ①, Yn+1= 解答 4 1 x n + 1 − y n 5 Yn ② ①+② から Xn+1+yn+1=Xn+yn P1(1, 1) から x+y=2 x=1, y=1 よって xn+yn=xn-1+yn-1==x+y=2 ゆえに yn=2-xn これを①に代入して整理すると 11 Xn+1= xn+ 20 85 32 変形すると 11 32 Xn+1 xn 31 20 31 32 1 また X1 31 31 32 ゆえに Xn =- 31 31/ (-20 n-1 32 1 よって n→∞ また 32 30 limxn=lim no31 31 limyn=lim (2-x)=2- 1+0=and -20))} = 32 Q=-- a+ 32 31 数列{X-3は 1 |Xn+1= xn+ 特性方程式 11 20 8-5 の解 a= 公比 31 ラ 11 31 - 20 818 n→∞ 31 31 比数列。 y=2xから。 したがって, 点列 P1, P2, ...... は定点 31' 31 3230 に限りなく近づく。 一般に, x=a, y=b, xn+1=pxn+gyn, yn+1=rxn+syn (pqrs≠0) で定められる {x}, {yn} の一般項を求めるには, 次の方法がある。 方法1 Xn+1+αyn+1=β(x+αyn)としてα, β の値を定め, 等比数列{xn+yn} 用する。

未解決 回答数: 0