学年

質問の種類

数学 高校生

指針の四角3のところで2分の1でくくってると思うのですがこの2分の1はグラフに影響しないんですか? 語彙力なくて質問内容が分からなかったらすみません💦

229 000 をいえ。 141 三角関数のグラフ (2) cos(2)のグラフをかけ。 また、その周期を求めよ。 基本のグラフy=coso 基本 • 00 基本140 との関係 (拡大 縮小, 平行移動)を調べていく。 であるから基本形y=cose をもとにし y=2 cos(2), y=2 cos- 0) >0) ① y=coseを軸方向に2倍に拡大 ② ①を軸方向に2倍に拡大 基本事項 てグラフをかく要領は,次の通り。 →y=2cos0 ① 2倍に拡大 ( 12 倍は誤りy=2cos2 0 2 ③②を軸方向に だけ平行移動 →y=2cos- 3 2 cos(0). ③ えられる。 注意 y=2cos 2 6 cos(-)0 移動したものと考えるのは誤りである。 CHART 三角関数のグラフ 基本形を拡大・縮小,平行移動 0 のグラフが y=2cos 12 のグラフを0軸方向にだけ平行 6 平行移動 -5-2 6 y=2 cos(2-7)=2 cos(0-1) 0の係数でくくる。 e 0 よって、グラフは図の黒い実線部分。 周期は2 =4π ly=cos の周期と同 2 じ。 ②y=2cosz √3 2 ③y=2cos1/12 (5) 4 3 2 π 52 2TT 10 10/3 3 π 6軸との交点や最大・ 最小となる点の座標を -T 12 1 0 -2 3 32 y=coso 27 T 4 4章 2 三角関数の性質、 グラフ チェック 9 3π 2 4л 2 13' 3 (12/20)(1/2-2). ①y=2cose (10x. 0). (x. 2) 試験の答案などでは、上の図のように段階的にかく必要はない。 グラフが正弦曲線であることと周期が4であることを知った上で, あとは曲線上の主な点 9 T をとってなめらかな線で結んでかいてもよい。

解決済み 回答数: 1
数学 高校生

数学の二次関数の決定について質問です。 写真一枚目の(2)がわかりません。 私の回答は写真2枚目なのですが、どこが間違っているのかわかりません。答えが違うのでどこかが必ず間違っていると思うのですが、何度計算しても正解にたどり着きません。私は、基本形を使わずに一般形を使って問... 続きを読む

基本 例題 94 2次関数の決定 0000 2次関数のグラフが次の条件を満たすとき, その2次関数を求めよ。 (1)頂点がx軸上にあって, 2点 (0, 4), ( - 4,36) を通る。 ( (2) 放物線y=2x2 を平行移動したもので,点 (2,4) を通り,頂点が直線 y=2x-4上にある。 指針 (1),(2) ともに頂点が関係するから、頂点のx座標をとおいて, 基本形 y=a(xb)+α (1) 頂点がx軸上にあるから g=0 からスタートする。 (2)平行移動によってx2の係数は不変。 したがって, a=2である。 また、頂点(b,g)が直線 y=2x-4上にあるから g=2ヵ-4 (1) 頂点がx軸上にあるから, 求める 2次関数は 頂点の座標は (p, 0) 解答 y=a(x-p)² と表される。 ...... このグラフが2点 (0, 4), (-4,36) を通るから ap²=4 * S (1) ①, a(p+4)²=36 ② ① ×9 と ② から lap=ap+4)2 α≠0 であるから 9p2=(p+4)2 整理して よって (p+1)(2)=0 -p-2=0 これを解いて p=-1,2 ①から p=1のとき a=4, p=2のとき α=1 したがって y=4(x+1), y=(x-2)2 (y=4x2+8x+4, y=x2-4x+4でもよい) (2)放物線y=2x2を平行移動したもので,頂点が直線 y=2x-4上にあるから,頂点の座標を(p2p4) とす ると, 求める2次関数は 4(-4-p)²=(p+4)² ① × 9 から 9ap^=36 これとa (p+4)=36か 5 9ap²=a(p+4)² α≠0 であるからこの 両辺をαで割って 9p²=(p+4)² 右辺を展開して 9p=p2+8p+16 整理すると p²-p-2=0 y=2(x-p)'+2p-4 とされる。 ****** ① このグラフが点 (24) を通るから 2(2-p)²+2p-4=4 y-2- 整理して p2-3p=0 よって p=0,3 2 p=0 のとき, ①から y=2x2-4 p=3のとき, ①から y=2(x-3)'+2 (y=2x-12x+20 でもよい y=2x2-4 0 /23 y=2(x-3)2+2

解決済み 回答数: 2
数学 高校生

(2)の解き方が分かりません😭教えてください

a の値の範 基本145 , 与式は 1つの解をも 着目 239 重要 例題 149 三角方程式の解の個数 aは定数とする。 10 に関する方程式 sin' d-cos0+a=0について,次の問いに 答えよ。 ただし, 0≦02 とする。 この方程式が解をもつためのαの条件を求めよ。 (2)この方程式の解の個数をαの値の範囲によって調べよ。 COS0=xとおいて, 方程式を整理すると 指針 x2+x-1-a=0(-1≦x≦1) 前ページと同じように考えてもよいが,処理が煩雑に感じられる。そこで, 02 重要 148 ①定数αの入った方程式 f(x) =αの形に直してから処理に従い,定数a を右辺に移項したx2+x-1=αの形で扱うと, 関数 y=x'+x-1 (-1≦x≦1) のグラ フと直線y=αの共有点の問題に帰着できる。 ← → 直線 y=a を平行移動して,グラフとの共有点を調べる。 なお (2) では x=-1,1であるxに対して0はそれぞれ1個, 1 <x<1であるxに対して0は 2個あることに注意する。 cos0=x とおくと,0≦0<2から この解法の特長は, 放物線を 固定して, 考えることができ るところにある。 =0をαにつ ると (x-2) 切線 y=x2 と 4 4章 2 三角関数の応用 -2) の共有 S 範囲にある 解答 方程式は (1-x2)-x+α=0 もよい。 解 参照。 したがって x2+x-1=a cost f(x)=x'+x-1とすると f(x) = (x+1/12/27 5 グラフをかくため基本形に。 4 (1)求める条件は,-1≦x≦1の範囲で、y=f(x) のグラフと直線 y=aが共有点をもつ条件と同じ y=f(x) ' 5 y=a 1 である。 よって, 右の図から ≦a≦1 [6]- + [5]- ' 1 X 1 (2) y=f(x) のグラフと直線 y=αの共有点を考え 2 x て 求める解の個数は次のようになる。 [4]- [1] a <! 1 <αのとき 5 4' 共有点はないから 0個 [3]- 5 [2] 1 T 練習 149 [2] a=- 5 のとき,x=-1/2から2個 4 12/23から2個 さ to se XA [6]- 5 [3] <a<1のとき [5]~ 0 [4] - π 12 [日 [2] [3] [4]- -1 はそれぞれ1個ずつあるから 2 4個 -1<x</12/12<x<0の範囲に共有点 [4] α=1のとき、x=-1, 0 から 3個 [5] -1 <a<1のとき, 0<x<1の範囲に共有点は1個あるから 2個 [6] a=1のとき,x=1から1個 108 OP 10に関する方程式 cosine-α-1=0の解の個数を, 定数αの値の範囲に

解決済み 回答数: 1