学年

質問の種類

数学 高校生

四角で囲んだ所って、どこからきたんですか??

478 例題 43 隣接3項間の漸化式 (3) 0000 この階段の (nは自然数) ある階段を1歩で1段または2段上がるとき, 方の総数を α とする。 このとき, 数列 {an} の一般項を求めよ。 数列 {an} についての漸化式を作り,そこから一般項を求める方針で行く 1歩で上がれるのは1段または2段であるから,n≧3のときれ 7段に達する 直前の 作を考えると [1] 2段手前 [(n-2) 段] から2歩上がりで到達する方法 [2] 1段手前 [ (n-1) 段] から1歩上がりで到達する方法 の2つの方法がある。 このように考えて、 まず隣接3項間の漸化式を導く。 → 漸化式から一般項を求める要領は, p.476 基本例題41と同様であるが、 ここで 特性方程式の解α. βが無理数を含む複雑な式となってしまう。計算をらくに ためには,文字 αのままできるだけ進めて、最後に値に直すとよい α=1, a2=2である。 解答 n3のとき, n段の階段を上がる方法には,次の [1], [2] の 場合がある。 [1] 最後が1段上がりのとき, 場合の数は (n-1) 段目まで の上がり方の総数と等しく an-通り [2] 最後が2段上がりのとき、 場合の数は (n-2) 段目まで の上がり方の総数と等しく an-2通り [1] 最後に1段上がる n段 n=2 [2] 最後に2段上がる n段 ここまで an-1 通り (n-1) 段 (-2) 段 ここまでα-2通り もっていく。 | (n-1) 段 よって an=an-1+an-2(n≧3) ...... (*) dants antitan (n ≥1) ①と同値である。 x=x+1の2つの解をα,β(α<β) とすると, 解と係数の 関係から α+β=1, aβ=-1 ①から an+2-(a+β)an+1+aBan=0 よって an+2-dan+1=β(aniュ-aan) az-aa=2-a ...... an+2-Ban+1=α(an+1-Ban) a2-ßa=2β...... ③ 和の法則 (数学 (*)でnnt 特性方程式 x2-x-1=0の x= 1±√5 2 a=1, a2=2 から ③から an+1-aan=(2-α)+ ..... ◄ar"-1 an+1-Ban=(2-β)α7-1 ④ ⑤ から (β-α)an=(2-α)β"-1-(2-β) an-1 ...... (6) an+1 を消去。 1-√5 a= 1+√5 B= 2 ラ であるからβ-α=√5 α,β を値に直 また, α+β=1, a2=α+1, B2=β+1であるから 2-α=2-(1-β)=β+1=β2 同様にして 12-a, 2-B 2-B=a² はαβの よって、⑥から an= 1+√5 \n+1 √(1+√5)-(1-√5) |- ④ 43 a=a2=1, an+2=an+1+3an 練習 次の条件によって定められる数列{an} の一般項を求めよ。 代入しても ここでは計算を ている。 類

解決済み 回答数: 1
数学 高校生

数学Aの順列・組み合わせの問題です。左写真の(2)(ⅱ)の問題で、右写真の赤線部から青線部への式変形をどうやってやっているのか分からないので教えて欲しいです。

154 第6 問 94 階乗, Pr, Cy の計算 (1) 次の計算をせよ. 10! (i) 8!-6! (ii) 7! (iii) 7P3 (iv) 6C4 (2)次の式が成りたつことを示せ. (i) *Cr=nCn-r (i) Cr=-1Cr-1+n-1Cr で 精講 (m (1)(i)(i) 記号 n! は 「nの階乗」 と読みますが,これは, nx (n-1)x...×2×1 とnから1までをかけることを表す記 号です.ただし, 0!=1 と約束します. n! は 「異なるn個のものを並べる方法」 の総数を表します. P は「異なるn個のものから個のものを選んで並べる方法」 の総数 を表す記号でこの総数は nx (n-1)x...×(n-r+1) と表せるので n! Pr= が成りたちます. (n-r)! (iv) C, は「異なるn個のものから個のものを選ぶ方法」 の総数を表す記 で,個のものを並べる方法が! 通りあることを考えると n! ,,すなわち,,=- r!(n-r)! が成りたちます。 (2)(i), (ii)ともに n! nCr= r!(n-r)! を使います. 解答 (1)(i) 81-6!=6!(8・7-1)=720×55 18!, 6! を計算してひ くのではなく, 6! で =39600 10!_10・9・8・7! くくるのがコツ = =10・9・8=720 7! 7! 7! (iii) 7P3- = 4! -=7・6・5=7・3・10=210 10を先につくる 6! (iv) 6C4= 4!2! 2 6.5=15 計算がラク

解決済み 回答数: 1