学年

質問の種類

物理 高校生

これどうして計算の時に毎回mとmmを合わせないと行けないんですか?

D である。 経路 1,2の経路差は ( (③3) さを表すと, AD=( ① ),BC=( ② となる。2つの経路の光が強めあうのは,経路差が波長の( ④ )倍のときである。 (2) 入射角i=45°のとき, 反射角 45°で反射して強めあう光の位置に対して, すぐ隣の 強めあう回折光の角度はr=50°であった。 この単色光の波長は何mmか。 sin45°=0.707, sin50°= 0.766 として, 有効数字2桁で答えよ。 (富山大改) 426. ニュートンリング■ 点Oを中心とする曲率半 径Rの平凸レンズLを, 平らなガラスGの上に置く。 レンズの光軸から距離dはなれた点Pで出た光が、 Lの上面に垂直に入射し, 点T, Dで反射する。次工 の文の( )に適切な式, 数値を入れよ。 TD間の空気層の厚さ6は,d, R を用いて, d R b=( 1 )と表せる。 -≪1 とすると,b=(2) となる。 光の波長入,正の整数m を用いると,26=( 3 ) のときに反射光は強めあう。 LとGの間を屈折率1.5 の液体 で満たし (L と Gの屈折率は等しい), i = 6.0×10-7 m とした。 最も内側の明環が (11. 茨城大改) d=0.90mmの位置で観察されたとき, R = ( 4 )m である。 ヒント 424 Sから鏡で反射してスクリーンに達する 425 (2) 入射角と反射角がい場合, 経路 426 (4) 液体中では光 変化する。 P してSと対称な位置からの光とみなせる。 差は生じない。 269

解決済み 回答数: 1
物理 高校生

(2)なぜ、これは強め合いの条件を使うんですか? 優しい方どなたか教えて欲しいです

る。 少の薄 RU 真 どのよ 943 ラス 目の可視 94 光 装置で、光源から波長の光を入射させて実験をし 299 ヤングの実験 右図のようなヤングの実験の 点を原点O, スクリーンと複スリットの距離をL た。 S, S, がら等距離の位置にあるスクリーン上の (1) 屈折率n, 厚さの物質Aをスリット S, の前に置いた。 このとき, 光は物質に対 してほぼ垂直に物質を横切るものとして, 単スリットと複スリットの間で生じる光路 = dはLに比べて十分小さいものとする。 差を求めよ。 (1)で、もともと原点Oにあった縞模様はどちらにいくら移動したか。 (3)物質Aを取り除き,スリット So を図の矢印の向き(下向き)にゆっくりと動かした。 物質を取り除いた後,干渉縞の明暗が初めて反転したときのS,S,-S,S2 はいくらか。 5番目と だけずれ | Step ただし、 94 3 解答編 p.163~166 (1) id, 0, を用いて表せ。 次に、図2のように波長がわずかに異なる。 波長の光を当てると, その1次の回折光を同じ 源 201 300 回折格子 格子定数d の回折格子に,波長入の単色 光を当ててスクリーンに向かわせると,図1のようにスク リーン上で明点が観察された。 図2のように、回折格子に 入射する光の進行方向と回折格子に立てた法線とのなす角 回折光と回折格子に立てた法線のなす角をβとする。 ここでは,α<βの場合を考え, 反射面に入射した光は, 反射面を中心とした素元波を発生させて、 様々な向きに広 がって進んでいくと考えてよいものとする。 (1) 経路 AD, BC をそれぞれ求めよ。 (2) 隣り合う回折光が強め合うときの条件式を書け。 図2 (3) 入射角α = α′で入射し、同じ角度で反射した光 (0次) に対して,最も近い明線の回折光 (1次) がβ=β' を満たすとき,角α'と'の間に成り 立つ式を求めよ。 の方向で観測するためには,回折格子をゆだ け傾ける必要があった。 (2) 経路の差P'A+ AQ' をd, p, 0, を用いて表 せ。 (3) - d, 0, を用いて表せ。 ただし, in cosp=1 と近似せよ。 である。 1 A 入射光 d S 回折格子 6801 回折格子図1は、格子定数dの回折格子に垂直に波長入の光を当て,入射光と の角をなす方向で干渉が起こることを説明した図である。このとき, 1次の回折光は 0 = 0, の方向で干渉を起こした。 PLA A 10 1 図1 図1 スクリーン 回折光 C D B 101 図2 (2) ASP'=, ∠ASQ'=0,-p 基礎 物理 23 その回折と干渉 185

解決済み 回答数: 1
物理 高校生

なんでこれ強め合うんですか?明るい、暗いの条件、言われてないんですけど

る。 少の薄 RU 真 どのよ 943 ラス 目の可視 94 光 装置で、光源から波長の光を入射させて実験をし 299 ヤングの実験 右図のようなヤングの実験の 点を原点O, スクリーンと複スリットの距離をL た。 S, S, がら等距離の位置にあるスクリーン上の (1) 屈折率n, 厚さの物質Aをスリット S, の前に置いた。 このとき, 光は物質に対 してほぼ垂直に物質を横切るものとして, 単スリットと複スリットの間で生じる光路 = dはLに比べて十分小さいものとする。 差を求めよ。 (1)で、もともと原点Oにあった縞模様はどちらにいくら移動したか。 (3)物質Aを取り除き,スリット So を図の矢印の向き(下向き)にゆっくりと動かした。 物質を取り除いた後,干渉縞の明暗が初めて反転したときのS,S,-S,S2 はいくらか。 5番目と だけずれ | Step ただし、 94 3 解答編 p.163~166 (1) id, 0, を用いて表せ。 次に、図2のように波長がわずかに異なる。 波長の光を当てると, その1次の回折光を同じ 源 201 300 回折格子 格子定数d の回折格子に,波長入の単色 光を当ててスクリーンに向かわせると,図1のようにスク リーン上で明点が観察された。 図2のように、回折格子に 入射する光の進行方向と回折格子に立てた法線とのなす角 回折光と回折格子に立てた法線のなす角をβとする。 ここでは,α<βの場合を考え, 反射面に入射した光は, 反射面を中心とした素元波を発生させて、 様々な向きに広 がって進んでいくと考えてよいものとする。 (1) 経路 AD, BC をそれぞれ求めよ。 (2) 隣り合う回折光が強め合うときの条件式を書け。 図2 (3) 入射角α = α′で入射し、同じ角度で反射した光 (0次) に対して,最も近い明線の回折光 (1次) がβ=β' を満たすとき,角α'と'の間に成り 立つ式を求めよ。 の方向で観測するためには,回折格子をゆだ け傾ける必要があった。 (2) 経路の差P'A+ AQ' をd, p, 0, を用いて表 せ。 (3) - d, 0, を用いて表せ。 ただし, in cosp=1 と近似せよ。 である。 1 A 入射光 d S 回折格子 6801 回折格子図1は、格子定数dの回折格子に垂直に波長入の光を当て,入射光と の角をなす方向で干渉が起こることを説明した図である。このとき, 1次の回折光は 0 = 0, の方向で干渉を起こした。 PLA A 10 1 図1 図1 スクリーン 回折光 C D B 101 図2 (2) ASP'=, ∠ASQ'=0,-p 基礎 物理 23 その回折と干渉 185

回答募集中 回答数: 0
物理 高校生

問9で、sinθ=√3/4なのは何故ですか?

例題 2 屈折波の波面 図のように,平面波が境界面に達した。 屈折 波の波面を作図せよ。 ただし, 媒質 I に対す る媒質ⅡIの屈折率を2 とする。 2 (+式 (9)) から, 01=n12=2 V₂² V₁ T 境界面 -= 1212 V₁ 指針 屈折の法則 -=n1z(p.152・式(9))から, 媒質ⅡIにおける波の速さが,媒質 V2 Iにおける速さの何倍になるかを求める。 ホイヘンスの原理にもとづいて素元波を描 き, 屈折波の波面を作図する。 解 媒質 I, I における波の速さをそれぞれ v1, v2 とすると, ma 逆の屈折る V₁ V2 V2 であり、媒質 Ⅱ における波の速さは, 媒質 Ⅰ における速さの1/12/2になる。図のように,B2 からAB におろした垂線とA,B との交点 B2C の素元波 (半 をCとして, B, から半径 円) を描く。 このとき, B2 からこの素元波に 2 引いた接線が, B2 を通る屈折波の波面となる。他の波面は,入射波の波面と境界面の『 交点から,この接線に平行な線を引くことで求められる。 B1 B2C 2 B2 入射波 の波面 媒質 Ⅰ A2 媒質 ⅡI] 屈折波 の波面 入射波 の波面 媒質 Ⅰ 媒質 Ⅱ 問9 類題例題2で,入射波の波面と境界面のなす角を60° とする。このときの屈折角 を0として,sin0 の値を求めよ。答えは分数のままでよく, ルートをつけたままでよい。 8 平面波 障害物に を送ると, にまわりこ 回折は, 部分にも すき間 (a))。 した る (図 波長よ の

回答募集中 回答数: 0
数学 中学生

答え合わせと大問3(2)とオープンセサミの 解説を教えていただきたいです!

4章 図形の調べ方 教科書 p. 103~106 組 番 名前 63 B 多角形の内角と外角 (2) 〔説明〕 い。 1) 2) n角形の外角の和は、 1 多角形の外角の和は360° である。 この 4巻 次の問いに答えなさい。 わけを次のように説明した。をうめなさい。 【4点x7】 (1) 右の図のよ うに、針金を 点Aで固定し, 点Bで50°折 り曲げ点C A で何度か折り曲げたら, ちょうど点Aを通り, ∠CAB=20° だった。 点Cで何度折り曲げま したか。 180°xn-n角形の内角の和) n角形の内角の和は、 180°x | n角形の外角の和は, n-20 だから、 180°×180°× 4-2 =180°xn-180°x +180°× 2 =360° 右の図で 大きさを求めなさい。 xの 【12点】 \40% 2157610 285 195 85° 75 1080 150 ○ 190. 75° 3 次の図で印をつけた角の和を求めなさ 【12点×2】 360 78° 720° 学習日 1. 20° 130 50° B 40360 /100 【12点×2】 150 (2) (1) では, 針金を2回折り曲げて三角形を つくった。このように, 針金を点Aで固定し, 何回か折り曲げて多角形をつくるとき 折り 曲げる角度をすべて40°にし、頂点Aの外角 も40℃ にするには 何回折り曲げればよいで すか。 0m オープンセサミ 巻 1つの内角が130°になる正多角形はない このわけを説明しなさい。 【12点 [説明]

未解決 回答数: 0